木造用制振ダンパーの効果と高層木造制振建築物への応用 Study on High Damping Rubber Shear Wall and Development of Large Scale Wooden Construction with Passive Control System

竹内 章博^{*} Akihiro Takeuchi 金川 基^{**} Motoi Kanagawa 古澤 知也 * Tomoya Furusawa

要 約

近年,熊本地震をはじめとした震度7規模の地震が頻発しており,木造建築物においても,いかにして耐震性能を確保するかが重要な課題となっている.

本報では昨年度に引き続き,実大木造建築物の振動台実験で設置した,高減衰ゴムを有する制振ダンパーについて,時刻歴応答解析による解析的検討を行い,その制振効果について検討を行った.

さらに,検証した制振ダンパーの構造を応用した10階建て中大規模木造制振建築物のシミュレーション解析を行い,高層木造建築物に対する制振ダンパーの効果について検討したので報告する.

- 目 次
- §1. はじめに
- §2. 制振ダンパーの概要
- §3. 制振ダンパーの効果
- §4. 高層木造制振建築物の検討
- §5. おわりに

§1. はじめに

近年,熊本地震をはじめとした震度7規模の地震が頻 発しており,木造建築物においても,いかにして耐震性 能を確保するかが重要な課題となっている.

昨年度の報告¹⁾では,熊本地震前震と本震を連続入力 した実大木造制振建築物の振動台実験を行い,大地震時 における木造建築物への制振効果を示した(**写真-1**).

本報告では引き続き,振動台実験で試験体に設置した 制振ダンパー(写真-2)について,時刻歴応答解析に よる解析的検討を行い,その制振効果について検討を行 った.さらに,検証した制振ダンパーの構造を応用した 10 階建て中大規模木造制振建築物のシミュレーション 解析を行い,高層木造建築物への効果について検討した.

§2. 制振ダンパーの概要

2-1 高減衰ゴム

図-1に、制振ダンパーに用いた高減衰ゴム(イソプ

* 技術研究所建築技術グループ

**技術研究所

写真一1 振動台実験実施状況

写真一2 制振ダンパー外観

レンゴム系粘弾性体)の性質を示す.

各種試験は文献²⁾の方法に基づいて行った. 図-1(a) には、高減衰ゴムのせん断応力度 - 歪関係を示す. なお、 各歪振幅時とも4回繰り返し載荷した結果を示している. 制振ダンパーに適用した高減衰ゴムは、紡錘形状の履歴 形状を描いており、履歴面積が大きいことが確認できる. また各歪振幅時における荷重の最大値より、繰り返し載 荷による耐力値の低下は小さく、性能劣化が少ないこと が分かる. また、せん断歪が 300%以下の範囲において は、安定した履歴ループを描いていることが分かる.

図-1 (b) に、高減衰ゴムの等価せん断弾性係数 Geq の歪依存性を示す.また、同図(c) には温度依存性を、 同図(d) には振動数依存性を示す.高減衰ゴムの Geq は、歪量によって値が変動し、低歪領域ほど大きな値を 示すことが分かる.一方、歪量が100%以上の領域では 概ね一定値となり、0.5 N/mm²程度の値を示す.Geq の 値は温度が低いほど、また、振動数が高いほど大きな値 を示すことが分かる.以上の様に、本制振ダンパーに適 用した高減衰ゴムは、各種依存性を有した素材であるこ とが分かる.

2-2 制振ダンパー

図-2に、写真-2で示した、高減衰ゴムを用いた制 振ダンパーの荷重 - 変形角関係を示す。制振ダンパーの 荷重 - 変形角関係は、繰り返しによる荷重低下がほとん ど無い、安定した履歴形状を示している。なお、制振ダ ンパーの荷重 - 変形角関係は、文献³¹に記載の方法に基 づいて、以下の実験により算出した。

図-3に, 試験体の概要図を示す.また,写真-3に, 静的水平加力実験状況の写真を示す.実験方法は柱脚固 定式とし,加力はアクチュエーターによる変位制御の正 負交番の3回繰り返し載荷とした.目標変形角は,見か けのせん断変形角で制御し,1/450,1/300,1/200,1/150, 1/100,1/75,1/50,1/30 rad とした.なお,加力は,試 験体が最大荷重に達した後,荷重が最大荷重の80%に低 下するか,見かけのせん断変形角が1/15 rad に達するま で行った.

図一1 高減衰ゴムの性質

写真一3 実験状況

§3. 制振ダンパーの効果

前報¹⁾では,熊本地震前震および本震を連続加振した 振動台実験について,制振ダンパーがある場合と,無い 場合の実験結果を比較して示した.一方,実験値の場合, 結果に試験体ごとのばらつきの影響も含まれる.

そこで本報では,前章で示した制振ダンパー1枚あた りの設置効果を検討するため,これまでの開発で構築し た振動解析モデルを用いて解析的検討を行う.解析は,制 振ダンパーがある場合(以降,制振)と,無い場合(以 降,耐震)について行う.

3-1 解析概要

図-4 に制振ダンパーを設置した場合の,木造建築物の解析モデル図を示す.解析モデル¹⁾は,これまでの開発で構築した2質点系の振動解析モデルとし,構造用合板耐力壁と柱および制振ダンパーをせん断ばねとして入力した.解析は,弾塑性解析プログラム (SNAP Ver.8: (株構造システム)を使用して行った.

図-5に制振ダンパーの骨格曲線および復元力特性を 示す.制振ダンパーの骨格曲線は前章で示した荷重-変 形角関係を包絡する様に設定した.復元力特性について は、木造用4折線 NCL モデルを用い、各変位時の等価減 衰定数が実験による値と概ね一致するように設定した.

図-6には、時刻歴応答解析の際に設定した制振ダン パーの骨格曲線(補正後)を、図-5に示した骨格曲線 (補正前)と併記して示す.なお、図中には、各折れ点時 における試験体の1次固有周期の値も示した.応答解析 の際には、静的水平加力実験結果から設定した骨格曲線 に対して、前述した高減衰ゴムの振動数依存を考慮した. 振動数依存による骨格曲線の耐力割増係数は、各折れ点 時の試験体の1次固有周期の値を用いて算出した.

表-1 に,熊本地震原波の諸元および観測日時を示す. 振動解析は,昨年度の報告¹⁾ と同様に,益城町宮園での 観測波(以降,熊本地震前震),KiK-net 益城町での観測 波(以降,熊本地震本震)を連続入力した.入力は試験 体のX方向をEW成分,Y方向をNS成分とし,X方向, Y方向,Z方向の3軸同時加振とした.

3-2 解析結果

以下では,層間変位の大きかった試験体のX方向について,制振と耐震の解析値の比較を示す.

図-7 (a) に熊本地震前震の,各階の荷重一変位図を, 同図 (b) には各階床の応答加速度の時刻歴波形を,同 図 (c) には各階の層間変位の時刻歴波形を,それぞれ 制振と耐震で比較して示す.また,図-8には同様にし て本震の場合を示す.応答変位の値は,制振の場合,耐 震に比べて大きく低減していることが分かる.また,各 層の荷重一変位関係より,制振の場合は,耐震の場合に 比べて剛性低下が抑制されていることが分かる.

7. 书述	方向	最大加速度	最大速度	最大変位
入月夜		$[cm/s^2]$	[cm/s]	[cm]
熊本地震前震	EW	731.8	135.8	28.2
(益城町宮園)	NS	631.5	118.1	22.3
2016年4月14日21時26分	UD	338.2	15.3	3.5
熊本地震本震	EW	1157.0	132.5	52.6
(KiK-net 益城町)	NS	653.0	84.9	20.5
2016年4月16日1時25分	UD	873.4	46.4	20.9

表-2に各階の最大層間変位および最大層間変形角の 値を、制振の場合と、耐震の場合で比較して示す.最大 層間変形角の値は、制振の場合、耐震に比べて半分程度 に低減されていることが分かる.特に1階の最大層間変 形角の値は、本震時の値が、耐震の場合 1/21 と 1/30 を 超えているのに対して、制振の場合は 1/42 と 1/30 以下 に低減されている.制振ダンパーを設置することにより、

制振

耐震 制振

30

30

耐震 制振

30

30

熊本地震本震

·耐震 制振

層間変形角の値を一般的に安全限界として用いられてい る 1/30 以下に抑えることが可能となることが分かる.

図-9には、各階の最大層間変位の推移を、制振の場 合と耐震の場合で比較して示す. 制振ダンパーを設置し た1階の場合、制振は耐震に比べて、前震を受けた後の 本震の層間変位の増加が抑制されていることが分かる. これは制振ダンパーを設置することにより、構造用合板 耐力壁の損傷が低減されていることに起因している.

X 方向	熊本地震前震	熊本地震本震			
耐震	64.1 (1/45)	139.0 (1/21)			
制振	43.5 (1/66)	69.2 (1/42)			
 単位:mm および rad ()内は最大層間変形角					

4

0

O Δ

熊本地震前震

図-9 最大層間変位の推移

§4. 高層木造制振建築物の検討

本章では、実大振動台実験で得られた知見を応用した、 10 階建ての中大規模木造建築物についてのシミュレー ション解析を行い、高層木造建築物に対する制振ダンパ ーの効果について検討を行う.

4-1 振動解析モデル

図-10 に解析モデル図を示す. 解析モデルは 10 質点 系の振動解析モデルとし,振動台実験に対する解析手法 と同様に,木造主架構および制振ダンパーをせん断ばね として入力した.

検討は、制振ダンパーを設置した場合(以降,制振) と,設置しない場合(以降,耐震)について行った.な お、制振ダンパーは、各階の解析方向に4基設置するも のとする.解析モデルにおける減衰定数は瞬間剛性比例 型5%とした.

4-2 制振ダンパーの解析モデル

図-11 には、制振ダンパー1基あたりの骨格曲線およ び復元力特性を示す.制振ダンパーの骨格曲線について は、実大振動台実験で使用した高減衰ゴムを用いた制振 ダンパーを応用して、図示した特性値で設定した.

復元力特性については、木造用4折線 NCL モデルを 用いた.

4--3 入力地震動

表一3に振動解析で入力した地震動を示す.

入力地震動には、レベル1およびレベル2の各地震動 レベルに対して、それぞれ観測波3波、告示波3波の合 計6波を用いた.なお、地盤については、文献⁴の設計 例4の第2種地盤を参考とした.告示波については、同 地盤の表層による地震動の増幅を考慮した.

図-12には、レベル2極稀地震の各地震動の加速度応 答スペクトルを示す. 図中には、告示で与えられている、 工学的基盤における加速度応答スペクトルの値を併記し た.本解析モデルの1次固有周期は、概ね1秒程度であ り、加速度一定領域外に位置していることが分かる.

(kN)

ا

疱

図-11 制振ダンパーの復元力特性(1基)

80

表一3 入力地震動

地震波 レベル	地震波 分類	入力地震動波形名	最大加速度 (cm/s ²)	最大速度 (cm/s)	最大変位 (cm)
レベル1 稀地震	観測波	El Centro1940NS	255	25	8
		TAFT1952EW	248		8
		八戸 1968NS	176		8
	告示波	乱数位相	130	13	8
		JMA 神戸 NS 位相	104	11	6
		八戸 NS 位相	101	17	6
レベル 2 極稀 地震	観測波	El Centro1940NS	509		15
		TAFT1952EW	497	50	15
		八戸 1968NS	352		15
	告示波	乱数位相	650	65	39
		JMA 神戸 NS 位相	519	53	31
		八戸 NS 位相	504	87	30

5

図-13 には、レベル2 極稀地震の各地震動の変位応答 スペクトルを示す. 図中には、告示で与えられている、工 学的基盤における変位応答スペクトルの値を併記した. 応答スペクトルの形状特性より、建物の応答変位を抑え るためには、建物の損傷を抑制し、固有周期の増加を抑 制することが有効であることが分かる.

4--4 解析結果

図-14 に固有値解析の結果を, 耐震の場合と制振の場 合で比較して示す.

1次固有周期の値は、1秒程度であり、耐震と制振で大 きな差異が無いことが分かる.

図-15 にレベル1 地震時の, 各層の最大応答層間変形 角図を, 耐震の場合と, 制振の場合で比較して示す. 図-16 には, 同様にしてレベル2 地震時の場合を示す.

制振ダンパーの設置による最大層間変形角の低減効果 は、レベル1地震時に比べて、大地震時であるレベル2 地震時の方が大きいことが分かる.

なお、レベル2地震時の場合、最大層間変形角の値は、 制振ダンパーの無い耐震の場合で1/50程度であるのに 対し、制振とすることにより1/80程度に低減されてい る.このことから、本開発で検討した高減衰ゴムを用い た制振ダンパーは、10階建て規模の高層木造建築物に対 しても制振効果を発揮することが確認できた.

§5. おわりに

以上,実大木造建築物の振動台実験で設置した制振ダ ンパーについて,解析的検討を行い,その制振効果につ いて検討を行った.さらに,検証した制振ダンパーの構 造を応用した10階建て高層木造制振建築物のシミュレ ーション解析を行い,その有効性について検討した

その結果,以下の事項が明らかとなった.

高減衰ゴムを用いた制振ダンパーの設置により,連続 した地震動を受けた際にも,構造用合板耐力壁の損傷を 抑制でき,耐震の場合に比べて最大層間変形角の値を低 減できることが分かった.

振動台実験結果を応用したシミュレーション解析により、10 階建て規模の高層木造建築物においても、制振ダンパーの設置による最大応答層間変形角の低減効果を確認できた.

謝辞.本報は,住友ゴム工業株式会社との共同研究開発 における成果の一部を報告したものである.ここに記し て謝意を表する.

参考文献

1) 竹内他:木造制振建築物の実大振動台実験と中大規 模木造建築物への応用,西松建設技報, VOL 45, 2022

- 2) 一般社団法人日本免震構造協会:パッシブ制振構造 設計・施工マニュアル第3版,2013.11
- 3) 公益財団法人日本住宅・木材技術センター:木造軸 組工法住宅の許容応力度設計(2017年版), 2017.3
- 独立行政法人建築研究所:改正建築基準法の免震関係規定の技術的背景,2001.8