建屋の復元力特性に関する研究(2層RCボックス壁の実験)

Load-Deflection Characteristics of Nuclear Reaction Building Structures (Load Experimental Study on Two Story RC Box Wall)

> 阿世賀 宏* Hiroshi Asega 飯塚 信一*** Sinichi Iizuka 前川 一行**** Kazuyuki Maekawa

長谷部 広行** Hiroyuki Hasebe

小林 孝至*** Takayuki Kobayashi

要 約

本研究は,BWR 型原子炉建屋の主耐震要素であるインナーボックス壁とシールド壁の 復元力特性におよぼす複合効果を検討することとインナーボックス壁の復元力特性を把握 することを目的として行なった実験的研究である。この実験の結果インナーボックス壁の 破壊に至るまでの荷重と変形の挙動,エネルギー吸収能力及び破壊モード等の多くの基礎 資料が得られた。

§1. はじめに

原子炉建屋の耐震設計のために多くの解析や実験的研 究が数多く行なわれている。その研究成果は原子炉建屋 の耐震安全性確認の資料としてたえず設計へ取り入れら れている。しかし一般の構造物に対して行なわれた研究 成果と比較してかならずしも十分とは言えない。本研究 は以上の点をふまえ BWR 型原子炉建屋の主耐震要素 であるインナーボックス壁とシールド壁の複合効果を把 握することとインナーボックス壁の復元力特性を把握す ることを目的として2層小型模型ボックス壁の水平加力 実験を行なった。

§2. 試験体

2.1 試験体概要

試験体は,BWR 型原子炉建屋のインナーボックスを 約1/25に縮小した2層ボックス壁の半割模型であり, 2層複合模型(以降 Ap とする)のボックス壁部分に相

Fig.2.1.1 2層複合模型試験体(Ap)形状

当する. 試験体の形状を Fig.2.1.1 に示す.

試験体は、Ap と同様に壁厚80mm、床スラブ厚50mmとした。加力高さは、基礎スラブ上面より1層スラブ芯までの高さが550mm、2層スラブ芯までの高さが1300mmである(Fig.2.1.3, Fig.2.1.4).

試験体の各部の名称を Fig.2.1.2 に示す.

補強筋は, 試験部分についてはすべて SD35相当のD 6 鉄筋を使用した. 壁補強筋比は, 縦, 横共1.2%(D 6 @67ダブル)とし, 床スラブ補強筋比は, 1.4%(D 6 @91 チドリ)とした.

試験体の配筋図を Fig.2.1.5~Fig.2.1.6 に示す.

^{*}技術研究部原子力室副課長 **技術研究部原子力室係長 ***技術研究部原子力室 ****技術研究部技術研究所係長

試験体は、半割りであるので、半割り境界側に出てく る壁およびスラブの鉄筋はすべてナット締めで定着させ た.

尚2層複合体模型の実験は後述委員会の他の機関で実施された。

2.2 使用材料

2. 2. 1 コンクリート

試験体部分のコンクリートは、粗骨材の最大粒径を10 mmとした豆砂利コンクリートとし、設計強度は Ap の圧 縮強度231kg/cmを目標とした。

コンクリートの配合を Table 2.2.1 に示す. 配合は, 試し練り結果に基づいて決定した.

Table-2.2.1	コンクリー	トの配合設計
-------------	-------	--------

配合	水セメント比	7॑K	セメント	粗骨材	細骨材	混和剤
	(%)	(kg/m³)	(kg/m²)	(kg/m ^a)	(kg/m³)	(1 ′m³)
	70	196	280	867	943	2.8

		1 層	2 層	基礎	Ap(1F)
圧縮強度 (kg/cm²)	1 2 3	271 263 257	285 278 280	301 313 285	
	平均	264	281	299	231
割裂強度 (kg/cm²)	1 2 3	25.1 24.9 27.4	25.4 25.8 23.7	24.8 26.1 28.0	
	平均	25.8	25.0	26.3	24.4
ヤング係数 (10 ⁶ kg/cm ²)	1 2 3	1.76 1.82 1.70	2.15 2.24 2.20	1.95 2.03 1.95	
	平均	1.76	2.19	1.97	2.02
ボアソン比	1 2 3	0.15 0.16 0.17	0.17 0.19 0.18	0.21 0.19 0.20	
	平均	0.16	0.18	0.20	0.15

Table-2.2.2 コンクリートの材料試験結果

Table-2.2.3 D 6 鉄筋の材料試験結果

	降伏強度	引張強度	伸び率	ヤング係数	降伏ひずみ
	(kg/cm²)	(kg/cm²)	(%)	$(10^6 kg/cm^2)$	(10 ⁻⁶)
1	4469	5578	17.0	1.84	
2	4469	5591	17.0	1.83	
3	4469	5563	16.0	1.85	
平均	4469	5577	16.3	1.84	2400

コンクリートの材料試験結果を Table 2.2.2 に示す.

2.2.2 鉄 筋

鉄筋は、試験体部分については SD35相当のD 6 鉄筋 を使用した。D 6 鉄筋の材料試験結果を Table 2.2.3 に示す。

§3. 加力方法

加力方法は, Ap 試験体の実験結果に基づいて立案した.

3.1 水平加力方法

3.1.1 加力スケジュール

加力スケジュールは、今後複合効果を検討する時のた めに Ap 実験で得られたボックス壁、円錐台壁各層の水 平変位を制御変位として作成した。

加力スケジュールの概要を fig.3.1.1 に示す.

3.1.2 加力方法

66

加力は、ウェブ壁側および半割り境界側上下2点,計4 点を制御位置として、アクチュエータ4台による変位制 御を行った。

加力概要を fig. 3. 1. 2, 3 に示す。加力位置を Fig. 3. 1. 4 に示す。

Fig.3.1.2 加力概要

3.1.3 境界条件

本試験体は半割り模型でねじれが生じる可能性がある ためウェブ壁側上下4点、半割り境界側上下4点、計8 点に横倒れ、ねじれ防止治具を設置した。

3.2 鉛直加力方法

鉛直加力は、試験体壁部で軸応力度20kg/cm²となるように軸力(64ton)を載荷した。

軸力は、2台のアクチュエータによりコンクリートブ ロックを介して載荷した.載荷点は、2台のアクチュエ ータの合力が、試験体断面の図心位置となる点とした.

§4. 計測方法

4.1 変位の計測

Fig.4.1.1 に変位計測点を示す。計測位置は,原則 的に Ap 試験体と同じにした。主な計測項目としては,

- ① 基礎スラブの動き
- ② 試験体各層および主要位置の水平変形
- ③ 試験体の曲げ変形

などである.

制御変位は, 各層スラブ中央の中心位置の絶対水平変 位とした.

Fig.4.1.1 変位計計測位置

4.2 鉄筋ひずみの計測

Fig.4.2.1~Fig.4.2.2に鉄筋ひずみの計測位置を 示す.計測位置は、変位の計測と同様、原則的に Ap 試 験体のボックス壁部と同じにした.

検討項目としては,壁脚部の抜け出し量,壁面のひずみ 分布,鉄筋の降伏状況等である。

4. 2 コンクリートひずみの計測

Fig.4.3.1 に, コンクリート表面ひずみの計測位置 を示す.

弾性時のコンクリートのひずみ状態を把握するため

Fig.4.2.1 鉄筋ゲージ位置(ウェブ壁)

△:ゲージ貼付位置

```
Fig.4.3.1 コンクリートゲージ位置
```

に,コンクリート表面のひずみを1ヶ所で3方向計測した.

4. 4 ひびわれの観察

ひびわれの発生状況の観察は、ボックス壁ウェブ部お よび両側フランジ部について行った。観察範囲は、加力 治具、変位計取付治具等により観察が困難な部分を除い た所とした。

ひびわれの観察は、ひびわれの発生状況を把握するた

Fig.4.2.2 鉄筋ゲージ位置(フランジ壁)

めに加力ステップ毎に行い,ひびわれの記録は,サイク ルの正負最大部材角時に行った.

ひびわれ幅の測定は、ウェブ1層、2層の壁高さの中央 位置(基礎から225mm、925mm)を横切るひびわれについ ては、その本数とひびわれ幅を、各サイクルの正負最大 部材角時および荷重零時に計測した。ひびわれ幅の測定 には、クラックスケールを使用した。

4.5 計測システム

本システムは、アクチュエータとスパーミニコンをオ ンラインにし、スパーミニコン端末から加力スケジュー ルを入力し、アクチュエータで制御変位を与え目標変位 到達時に、アクチュエータ反力、変位計値、ひずみ値を ミニコンに取り込み、ディスクに記録する。

その後、ディスクのデータをパソコン画面にグラフィ ック化した情報として表示する.

§5.実験結果および検討

5.1 実験経過

実験経過を Table 5.1.1 に,初期調性および諸荷重

一覧を Table 5.1.2 に示す.

Table-5.1.1 実験経過

年月	日 昭和6	51年3月8	~13日		
91	トル 2層:	ボックス壁	験		
サイクル	荷重 (ton)	变位 (mm)		跕	録
	23.6	0.40	せん断ひびわれ発	生(ウェブ1	層中央高さ、引張側 3 本)
+ 2	31.2	0.65	せん断ひびわれ発	生(ウェブ2	層)
	- 21.9	-0.52	せん断ひびわれ発	生(ウェブ1	層中央)
- 2	-28.7	-0.66	せん断ひびわれ発	生(ウェブ2	層引張側)
+ 2	50.4	1.30	曲げひびわれ発生	、その後す。	ぐに曲げせん断ひびわれとなる。
73			(ウェブ1層引張側)	
	68.5	2.62	フランジ1層部分	に曲げひび	bれ発生
70	[Ι	ウェブ1層部分に	せん断ひび	ちれ多数発生
	-49.3	-1.86	曲げひびわれ発生	、その後すい	いに曲げせん断ひびわれとなる。
-0			フランジ壁にせん	新ひびわれる	笔生
+10	111.2	5.21	1層ウェブ圧縮側	に圧壊のきま	š L
-11	-107.2	-5.24	ウェブ引張側のせ	ん断ひびわれ	1幅0.5mmの所あり
+12	110.9	5.20.	ウェブゾーンに圧	壊が出はじゅ	りる(コンクリートの剝落)
. 14	107.9	6.00	圧壊がウェブをは	ぼ貫通。ウ:	ェブ部すべりはじめる
T 14	103.8	6.30	荷重が下がりはじ	める	

			正方向載荷時			負方向載荷時		
			#1	せん断力	変 位	サイ	せん断力	変位
		14	クル	Q(ton)	δ(mm)	クル	Q(ton)	δ(mm)
1 11	HBNHE (tom/om)	1	1	18	82			_
fが知用りた(ton/cm)		2	1	16	44			
曲	りひびわれ	1	3	50.4	1.30	- 6	- 49.3	-1.86
	発生荷重	2						
曲	1せん断ひびわれ	1	3	50.4	1.30	- 6	- 49.3	-1.86
	発生荷重	2						
せ/	も断ひびわれ	1	2	23.6	0.40	- 2	- 21.9	-0.52
	発生荷重	2	2	31.2	0.65	- 2	- 28.7	-0.66
	ウェブ壁	1	10	96.3	4.16	- 10	- 95.6	-4.18
	縦 筋	2						
鉄	ウェブ壁	1	14	77.2	8.59			
助降	橫 筋	2						
伏	ウェブ壁	1	10	111.2	5.21	-10	- 95.6	-4.18
重	脚部縦筋	2						
	フランジ壁	1	14	82.2	8.06			
	脚部縦筋	2						
コンクリート圧壊発生		10	111.2	5.21				
圧は	裏のすべりはし	; ø	14	107,9	6.01			
最	大 耐	ታ	10	112.2	5.21	-10	-108.4	-5.31
破	壞 形	式		せん断すべり破壊				

Table-5.1.2 諸荷重一覧

5.1.1 初ひびわれ発生状況

1層の初せん断ひびわれは、2層絶対部材角 R=0.3 ×10⁻³rad.(1層部材角 R₁=0.44×10⁻¹⁰rad.;以降 R, R₁とする)でウェブ中央やや引張側位置に発生した. 次いで R=0.5×10⁻³rad.で、2層ウェブ中央位置にせ ん断ひびわれが発生した.

その後,1層ウェブ引張側部分に曲げひびわれ、およ びその伸展による曲げせん断ひびわれが発生した.

5.1.2 鉄筋の降伏

鉄筋の降伏状況を Fig.5.1.1 に示す。

鉄筋の降伏は、まず1層ウェブ引張側脚部縦筋が最大 耐力直前に引張降伏し、その後、圧縮側脚部の縦筋が圧 縮降伏した.

部材角の増大に伴いウェブ壁脚部の縦筋が降伏し、最

大変位時(R=8×10⁻³rad.)では、引張側フランジ壁 脚部の縦筋も何ヶ所か降伏した。横筋の降伏は、ウエブ 壁脚部と1層ウェブ壁引張側2ヶ所であった。

2層部分の鉄筋については、降伏はみられなかった。

Fig.5.1.1 鉄筋の降伏状況

5.1.3 コンクリートの圧壊

コンクリートの圧壊は,部材角R=4.0×10⁻³rad.(R₁ =6.2×10⁻³rad.)で,1層ウェブ壁圧縮側隅角部の基礎 から10cm程の高さの所に圧壊とおもわれる細かいひび われがみられた.

その後,同じ部材角の大きさでの繰り返しのサイクル で,ウェブ壁の圧縮側からウェブ壁幅の1/4位の長さに わたり圧壊の伸展がみられた。

R=4.6×10⁻³rad. (R₁=9.0×10⁻³rad.) において, 圧壊がウェブ壁の3/4位の長さまで伸展してすべりはじ め, R=4.8×10⁻³rad.

(R₁=9.6×10⁻³rad.) で荷重が下がり始めた.

5.2 ひびわれ状況

5.2.1 ひびわれ発生状況

ひびわれの観察は、加力治具および変位計等によりす べては観察できないので、主にウェブ壁1層、2層、フ ランジ壁の手の届く範囲とした。

初ひびわれ発生状況で述べたように、まず、せん断ひ びわれがウェブ壁に発生し、次いで曲げひびわれ、曲げ ひびわれの伸展による曲げせん断ひびわれの順に発生し ていった。しかし、2層ウェブ壁については、せん断ひ びわれのみで、曲げひびわれおよび曲げせん断ひびわれ は、観察範囲においては、みられなかった。 ウェブ壁については、1層部分がR=4.0×10⁻³rad. でほぼ鉄筋間隔程度のひびわれが発生したが、2層部分 はこの時点でもまだひびわれの本数は少なかった.

フランジ壁については、R=2.0×10⁻³rad.のサイク ルで初めてひびわれが発生した.しかし、最大変位時に おいても、2層高さ位置のフランジ部には、ひびわれは、 観察できなかった.

ひびわれの角度については、ウェブ壁のせん断ひびわれは、45度位の傾きであるが、2層ウェブ壁の負側のひ びわれは、45度よりやや急な傾きとなっている。フラン ジ壁については、正加力によるひびわれがほぼ水平であ るのに対して負加力によるひびわれは、30度位の傾きを もっている。

最終のひび割れ状況を Fig.5.2.1 に示す.

Fig.5.2.1 ひびわれ状況(最終破壊時)

5.2.2 ひびわれ幅とひびわれ本数

各サイクルのピーク部材角時のひびわれ幅とひびわれ 本数を Table 5.2.1 に示す.

	Table-5.2.1	ひびわれ幅とひびわれ本数
--	-------------	--------------

-	4		最	大部	材角	時		零 荷	重時	(
部45月 × 10-3	1	æX.	1	- N	2	層	1	14	2	層
~ 10	1月6	2 🖷	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
0.5	2		0.04	0.04			0	0		-
1.0	9	5	0.08	0.04	0.08	0.06	0.04	0	0.06	0
2.0	29	9	0.10	0.04	0.08	0.04	0.08	0	0.06	0
4.0	41	17	0.20	0.06	0.15	0.06	0.08	0	0.06	0

	-									(nn)
*****	+	8 6.	最	大 部	材角	跱		零 荀	重時	
) ==0-174 /=1 × 10 − 3	1	**	1	層	2	層	- 1	層	2	層
~ 10	1層	2層	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
-0.5	2	1	<0.04	<0.04	<0.04	< 0.04	0	0	0	0
-1.0	17	6	0.08	0	0.08	0	0.04	0	0	0
- 2.0	21	11	0.10	0.04	0.08	0.04	0.06	0	0	0
- 4.0	36	13	0.20	0.04	0.10	0.04	0.04	0	0.04	0

ひびわれ幅,ひびわれ本数とも,測定はウェブ壁各層の 高さ中央位置を横切るものを対象とし,その中での最大, 最小を各サイクルの最大変位時および零荷重時に測定し た.

- 5.3 荷重一変形関係
- 5.3.1 荷重一全体変形関係

全荷重 – 屋上階加力スタブ芯位置での変形関係を Fig.5.3.1 に全荷重 – 1 階加力スタブ芯位置での変形 関係を Fig.5.3.3 に,屋上階部分のせん断力 – 屋上階 の相対変形の関係を Fig.5.3.2 にそれぞれ示す。

なお,以後の各荷重および変形に関しては,下図の記号 をそれぞれ用いることとする.

5.3.3 変形成分の分離

曲率分布を Fig.5.3.4 に示す。

加力スタブ芯位置での水平変形に占める曲げとせん断 の割合を Fig.5.3.5 に,また,鉄筋の抜け出しによる 影響を考慮したものを Fig.5.3.6 に示す。曲げ変形は 下図の方法により算出した。

曲 率
$$\phi_{i} = (\delta_{Li} - \delta_{Ri}) / (\ell \cdot \Delta_{Xi})$$

曲げ変形 $\delta_{B} = \sum_{i=1}^{n} (hi \cdot \phi_{i} \cdot \Delta Xi)$

なお, せん断変形 os は, 全体変形から曲げ変形を差し 引いて求めた.

5.3.4 変形モード

Fig.5.3.7 にウェブ壁側,半割境界側についての試験体の変形状態を部材角0.25,2.0,4.0×10⁻³rad.について示す.

変形は,試験体の高さ方向に取り付けた変位計による 水平方向の値と,各層に取り付けた鉛直変形用の変位計 の値を用いて示してある.

5.4 鉄筋のひずみ

Fig.5.4.1~Fig.5.4.2 にウェブ壁の縦筋, 横筋の ひずみ, Fig.5.4.3~Fig.5.4.6 にフランジ壁縦筋, 横筋のひずみ分布を示す.

びすみ分布は, 1.0, 2.0, 4.0×10⁻³rad.時の値を正 負に分けて示す. ひずみの値は, 引張側を正とする.

5.5 コンクリートのひずみ

Fig.5.5.1 に試験体に貼ったコンクリートゲージより 求めた主ひずみ分布を示す.

5.6 荷重比

Fig.5.6.1に、本試験体の1層荷重と、2層荷重の 各サイクル正負ピーク時の比を示す。

これをみると、正負における荷重比の違いはみられな い.8サイクル(R=1.0×10⁻³rad.)までは、ほぼ一定 の割合の荷重比のようであるが、その後、サイクルの増 加により、荷重比が大きくなってきている。これは、試 験体のひびわれ、圧壊、破壊等により上下の荷重負担が 変わってきたためと思われる。

Fig.5. 6. 2 各層の壁側荷重と境界側荷重との比を示す.

Fig.5.3.4 曲率分布(正加力)

Fig.5.3.5 変形成分の北較(屋上階スラブ位置)比

階スラブ位置)

Fig.5.3.7 変形モード(ウェブ壁)

5.7 履歴ループ

Qー&, Qー&関係の無次元化ループ(屋上階高さ位置での部材角4×10⁻³rad.時)を Fig.5.7.1~Fig.5.7.2 に示す.

5.8 復元力特性

Fig.5.8.1 に本実験の M- ϕ 関係の包路線(最下部) を,計算値による曲げひびわれ荷重,曲げ降伏荷重位置

Fig.5.7.1 無次元化ループ(Q-S₂)

Fig.5.7.2 無次元化ループ(Q-S₁)

と合わせて示す。

Fig.5.8.2に本実験の τ-γ関係の包路線(最下部) を,計算値によるせん断ひびわれ荷重,せん断終局荷重 (修正広沢式)位置と合わせて示す.

Fig.5.8.3~Fig.5.8.5 に全体変形,曲げ変形(最下部),せん断変形(最下部)についての無次元ループを示す. R=4.0×10⁻³rad.の繰り返しでは,ループ形状が逆 S字形になっている.

全体変形についての等価粘性減衰定数を Fig.5.8.6 に、剛性低下率を Fig.5.8.7 に示す。等価粘性減衰定 数は、R=1.0×10⁻³rad.以降は正負ともほぼ同じよう な値となっている。また、同一部材角での繰り返しによ る等価粘性減衰定数の値が小さくなってゆくのがわか る。剛性低下率は、正負とも、ほぼ同じような値となっ ており、R=2×10⁻³rad.で約40%、R=4×10⁻³rad. で約30%値であった。

Fig.5.8.1 モーメント – 曲率関係(最下部)

Fig.5.8.2 せん断応カーせん断変形角関係(最下部)

5.9 実験結果と既往式との比較

Table 5. 9. 1 に本実験の実験結果と計算値による比較 を示す。

				(ton/cm)
		実験値	計算值	実/計
初期剛性	1層	1882	1798	1.05
(ウェブ壁のみ)	2層	1644	1475	1.11
初期剛性	1層	1882	2757	0.68
(フランジ璧考慮)	2層	1644	2269	0.72

Table-5.9.1	実験値と計算値の比較
14010-0.0.1	大阪川山に日井山山の北市人

				(ton/em)
		実験値	計算值	実/計
曲げひびわれ強度	ウェブ壁のみ	50 S	29.3	1.72
	フランジ壁考慮	50.5	45.3	1.10
曲げ降伏強度	ウェブ壁のみ	112.0	58.4	1.93
	フランジ壁考慮	112.9	109.0	1.03

			(ton)
	実験値	計算値	実/計
せん断ひびわれ強度	23.6	38.6	0.61

せん断耐力の比較

せん断耐力の比較			(ton)
	実験値	計算值	実/計
修正広沢式	111.2	103.2	1.07
東大式+軸力		113.6	0.98
戸田式		150.9	0.74
全補強式		122.5	0.91

5.9.1 初期剛性

計算値による初期剛性は以下の式を用いた.

$$Ke = \frac{1}{\frac{1}{K_{B}} + \frac{1}{K_{S}}}$$
$$\frac{1}{K_{B}} = \frac{h^{3}}{3EcIe}$$
$$\frac{1}{K_{S}} = \frac{\varkappa \cdot h}{G \cdot Ae}$$

ここで,

- Ke:等価剛性
- K_B :曲げ剛性
- K^s :せん断剛性
- h : 加力点までの距離
- A_e:有効断面積
- E_c :コンクリートのヤング係数

$$I_{e} = I_{c} \{1 + (n-1) \cdot P_{w}\}$$

- n : ヤング係数比 E_s/E_c
- E_s :鉄筋のヤング係数
- Pw :壁筋比
- G :せん断弾性係数 (= $E_c/2(1+\nu)$)
- *ν* :ポアソン比
- к :形状係数
- (a) ウェブ壁のみを有効断面とした時

$$K_{B1} = 21740t/cm$$

 $K_{S1} = 1961t//cm$
 $K_{S2} = 10204t//cm$
 $K_{S2} = 1724t/cm$
 $\therefore K_{e1} = 1798t/cm$
 $K_{S2} = 1475t/cm$
(b) フランジ壁の1/4までを有効断面積とした時
 $K_{B1} = 33785t/cm$
 $K_{S1} = 3000t/cm$

 $K_{B2} = 15948 t/cm$

- $K_{\text{S2}}=\!2645t/\text{cm}$
 - ∴K_{e1} =2757t/cm
 - $K_{e2} = 2269 t / cm$

§5.9.2 曲げひびわれ荷重

計算による曲げひびわれ荷重は,以下の式による.
$M_c = (Ft + \sigma_0) \cdot Z_e$
ここで
M _c :曲げひびわれモーメント
F _t :コンクリートの引張強度
$\mathrm{M_c}$: 断面係数 (= $\mathrm{I_e}/(rac{\mathrm{D}}{2})$)
$\mathbf{M}_{\mathtt{c1}} = \! 2934$.4t $m{\cdot}$ cm
$\mathbf{M_{c2}}=\!2825.2\mathbf{t}\cdot\mathbf{cm}$
・実験による曲げひびわれ発生荷重時と比較してみ
, È
・正加力
$M_{exp} = 43.86 \times 110 + 6.5 \times 35$
$=5052.1t \cdot cm$
・試験体の有効断面をウェブ壁およびフランジ壁の
1/4とした時の Z _e を用いると,
$M_{c1} = 4578.7t \cdot cm$
$\mathrm{M_{c2}}=4408.3\mathrm{t}\cdot\mathrm{cm}$

5.9.3 せん断ひびわれ強度

計算によるせん断ひびわれ強度は、以下の式による.

$$Q_{sc} = A_{w} \cdot \tau_{sc}$$
$$\tau_{sc} = \frac{0.085 \cdot K_{c} \cdot (500 + F_{c})}{M/QD + 1.7}$$
$$\times (1 + \frac{\sigma_{0}}{150})$$

ここで

З

Qsc:せん断ひびわれ荷重

- Aw :有効断面積
- K_c :断面寸法による補正係数(=0.72)

実験時におけるせん断初ひびわれ発生荷重時の荷重比

より $M/QD_1 = 0.58$ $M/QD_2 = 0.36$ $\tau_{\rm SC1} = 23.2 \rm kg/cm^2$ $Q_{sc1} = 38.6 ton$ $\tau_{\rm SC2} = 26.3 \rm kg/cm^2$ $Q_{SC2} = 43.7 \text{ton}$ 5.9.4 曲げ降伏荷重 曲げ降伏モーメントの計算は、以下の仮定による。 ・断面は、ウェブ壁のみ ・曲げ降伏モーメントは、引張最外端の鉄筋が降伏点 に達する時の曲げモーメントとする。 ・コンクリートは引張応力度は負担しない ・コンクリートの応力分布は三角形とする ・鉄筋は壁厚中央部に一様にある 以上より My=5837.9t • cm ・実験における最大荷重時のモーメントは、 $M_{exp} = 130 \times Q_2 + 55 \times Q_1$ =11288.5t • cm 断面をフランジ壁の1/2まで有効と考えると $M_V = 10898.4t \cdot cm$ 5・9・5 せん断終局強度 (a) 修正広沢提案式による計算値⁶⁾ $Q_{su} = \tau_{su} \cdot A_w$ $0.0679 \cdot P_w^{0.23} \cdot (180 + F_c)$ $\tau_{su} = -$ M/QD + 0.12 $+2.7\sqrt{\mathbf{P}_{w}\cdot\boldsymbol{\sigma}_{v}}+0.1\boldsymbol{\sigma}_{0}$ ここで :せん断終局強度 Q_{su} :有効断面積 A_w :コンクリートの圧縮強度 $\mathbf{F}_{\mathbf{C}}$:軸応力度 σ_0 : 鉄筋降伏応力度 σy : 鉄筋比 P_w M/QD :シアースパン比 (実験における上下の 荷重比) $\tau_{\rm su} = 62.02 \, \rm kg/cm$ $Q_{su} = 103.2 ton$ (b) 東大提案式+軸力⁷⁾ $Q_{su} = \tau_{su} \cdot A_{w'}$ $0.0679 \cdot P_{--}^{0.23} \cdot (180 + F_{-})$

$$\tau_{SU} = \frac{0.0013 \, \Gamma_{WV} - (100 + \Gamma_C)}{M/QD + 0.115} \\
 + \frac{1}{2} (P_{WH} \sigma_{Y} + 2.7 \sqrt{P_{WH} \sigma_{Y}}) + 0.1 \sigma_{o} \\
 A_{w}' = 有効断面積 \\
 以下は(a)に同じ$$

$$\begin{aligned} \tau_{su} &= 70.98 \text{kg/cm}^{2} \\ Q_{su} &= 113.6 \text{ton} \\ \text{(c)} \quad & \overrightarrow{P} 田 建設の式^{\text{s})} \\ & cQu &= c\tau u \cdot t \cdot D \\ & c\tau u &= \tau c + \tau s + \tau o \\ & \tau c &= 2.7 \sqrt{F_{c}} (1.9 - 1.5 \frac{\text{M}}{\text{QD}}) \\ & \tau s &= \frac{1}{2} P_{w} \cdot \sigma_{y} \\ & \tau_{o} &= \sigma_{o} \\ & c\tau u &= 90.69 \text{kg/cm}^{3} \\ & cQu &= 150.9 \text{ton} \\ & & \overrightarrow{a} &= 1.3 \sqrt{F_{c}} \\ & \sigma_{o} &\geq 1.3 \sqrt{F_{c}} \\ & \sigma_{o} &= \sigma_{o} \end{aligned}$$

- §6. まとめ
- 2層ボックス壁試験体の実験結果をまとめると以下の ようになる.
- 1. 初期剛性は、ウェブ壁のみを有効断面とすると計算 値を上回り、フランジ壁幅1/4を有効断面とすると概 ね対応する.
- 2. せん断ひびわれ荷重は、実験値か計算値を下回って いる.
- 3.曲げひびわれ、曲げ降伏荷重は、実験値か計算値を 上回っている。

フランジ壁による影響と考えられる.

- 4. 最終破壊は、1 階壁基部のせん断すべり破壊であり、 せん断耐力は、既往式と比較すると、0.91~1.07位の ばらつきで概ね評価できる。
- 5.曲げ変形とせん断変形の成分比は屋上階では約 0.25:0.75であった.また,基礎の抜け出しによる変 形は,全体の5%であった.
- 各サイクルにおける無次元化ループを比較してみると、部材角の増大に伴ってループ面積は大きくなる傾向にあり、同一部材角のくり返しによりループ面積が小さくなる傾向にある。

尚,本研究は(社)建築研究振興協会の「建屋の復元力 特性に関する研究」委員会により西松建設㈱、フジタ工 業㈱、戸田建設㈱、㈱熊谷組、佐藤工業㈱、㈱間組、前 田建設工業㈱の共同研究として実施された.実験の計画、 実施に当り御指導・御助言を頂いた委員長・東京都立大 学渡部丹教授はじめ各委員の方々に深く感謝致します.

Ⅳ. 参考文献

- 1)建屋の復元力特性に関する研究委員会、「建屋の復元 力特性に関する研究 実験計画書」、(社)建築研究振興 協会、昭和57年11月
- 2) 建屋の復元力特性に関する研究委員会,「建屋の復元 力特性に関する調査報告書(文献調査)」,(社)建築研 究振興会,昭和57年3月
- 3)建屋の復元力特性に関する研究委員会、「建屋の復元 力特性に関する研究、中間報告書」、(社)建築研究振興 会、昭和58年11月
- 4) 建屋の復元力特性に関する研究委員会,「建屋の復元 力特性に関する研究,中間報告書(その2)」,(社)建 築研究振興会,昭和60年3月
- 5)山口他,「プレストレストコンクリート円筒壁体のせん断耐力に関する研究」,日本建築学会大会梗概集,昭 和54年9月
- 6)広沢雅他,「既往の鉄筋コンクリート造耐震壁に関す る実験資料とその解析」,建築研究資料No.6
- 7) 梅村 魁,「鉄筋コンクリート立体耐震壁の耐力と復 元力特性に関する実験的研究」,梅村研究室報告,昭和 50年9月
- 8)千葉他、「建屋の復元力特性に関する研究 その41: 耐震壁の最大せん断耐力とせん断変形性状に関する検 討」、日本建築学会大会梗概集、昭和60年10月