西松式免震構法の開発(その1) 免震構法の設計法と免震建築物のモデル設計

The Development of Nishimatsu Construction Base Isolation System (Part 1) A Design Method and Model Study

> 大泉 敬実* Yoshimi Oizumi

石田 忠*** Tadashi Ishida 小林 孝至** Takayuki Kobayashi

阿世賀 宏**** Hiroshi Asega

要 約

本報告は,西松式免震構法の設計法とその設計法によるモデル設計例を紹介している. 同設計法は,地震動のレベルに応じて設定した耐震性能目標値に対し,動的解析による確認のプロセスを経ることで,免震構造物および免震装置の安全性の評価を行っている.定めた耐震性能目標値のうち免震装置に対する値は,免震装置の実験結果を考慮し設定している.

この確認のプロセスに沿って、西松式免震構法の一つである積層ゴムとリングダンパー によるモデル設計例を示した。同モデル設計例で、免震装置を採用した場合と採用しなか った場合の比較検討を行った。その結果免震構造物の最大応答加速度とせん断力は、非免 震構造物の30~80%に、また層間変位の最大応答値は10~60%に低減されることがわかっ た。

- 目 次
- §1. はじめに
- §2.積層ゴムとリングダンパー方式免震構法の設計法
- §3. 免震建築物のモデル設計
- §4. おわりに

§1. はじめに

近年において建築物に対する社会的要求は多様化する 一方であり、特に建物の高機能化、インテリジェント化 に伴って設計の多自由度化が図られている。それらを充

****技術研究部原子力室副課長

分に加味考慮した上で西松式免震構法の設計法,その施 工法および維持管理方法の開発を行った.本免震構法は 免震装置を建築物の上部構造と基礎構造との間に設置 し,地震時の上部構造への地震入力の低減を図り人命の 安全,構造体,居住環境および建物内部の貴重品に対し て懸念される地震被害を最小限に留めることを目的とし て,平成元年4月に(財)日本建築センター免震構造研究 委員会の技術審査を終了している.

西松式免震構法は、標準積層ゴム+リングダンパー方 式の免震構法,鉛芯入りの積層ゴムによる免震構法,高 減衰積層ゴムによる免震構法の三つのタイプがある.

そのうち,リングダンパーは MIN ダンパー(東京大 学松下清夫名誉教授,西松建設他により開発,昭和58年 特許第1137771号)を発展改良したものである.

本報告は積層ゴムとリングダンパー方式の免震構法 (Photo 1 参照)の耐震設計法とこの設計法に基づいた

^{*}建築設計部構造課係長 **技術研究部原子力室 ***建築設計部構造課課長

Photo 1 免震構法

免震建築物のモデル設計について述べたものである。

§2. 積層ゴムとリングダンパー方式免**腰**構 法の設計法

2-1 免震構法の概要

西松式免震構法の建物は、基礎部分または建物下部が 二重構造をもったものとする。

その二重構造の間に積層ゴムとリングダンパーを組み 合わせた免震装置を配置する。

免震機能としてはパッシブ型制振に属するものであ る.

以下に積層ゴム、リングダンパーの特徴を示す。

(1) 積層ゴム

積層ゴムは高鉛直剛性と低水平剛性を有している. 主な機能は建物の重量を支持するとともに長周期化を図っている.

また水平剛性は線形挙動のため、地震時の振動エネル ギーは吸収しない.

(2) リングダンパー

積層ゴムだけでは地震時の振動エネルギーを吸収する ことができないので、このリングダンパーを設置する. そうすることにより振動エネルギーを吸収し、二重構造 の間に大きな相対変位が生じることを防ぐ.

なお,設置については4個一組みにして方向性をもた せない.

2-2 設計基本方針

(1) 建築設計

建築設計にあたっては以下に示す注意点を考慮して配 置,動線および防災などの計画を行う.

地震時には二重構造間に大きな相対変位が生じる。したがって、二重構造間あるいは隣接構造物と

地震動規模	地表面 速度值	免震装置	上部建物
レベル 1	25cm/s	水平变位 15cm以下	層間変形角1/200, 短期許容応力度以 内
レベル 2	50cm/s	水平変位 22.5cm以下	最大応答値で各層 の塑性率が1.4 以下

衝突しないようにする.

- ② 免震装置の機能を発揮させるため、装置の変形を 妨げるような設備・物品・樹木などを配置しない。
- ③ 免震装置の機能維持のため、直射日光・浸水など に注意するほか、万一火災時には直接火に触れない ようにする。

④ 免震装置の維持管理,検査・補修などを考慮する。(2) 構造設計

構造設計にあたっては敷地地盤での地震動を選定す る.

また、レベル1・レベル2の二つの規模の地震動に対 して、定められているクライテリアから上部構造の設計 目標値を設定する。そのあと地震応答解析により各レベ ルでの免震装置、上部構造の安全性を確認する. Table 1 に地震動の規模と耐震性能評価基準を示す.

2-3 設計フロー

西松式免震構法の設計フローを Fig. 1 に示す. このフ ローに従い,設計・解析をして目標値を満足させていく ことにより適正な免震建物の設計が完了する.

以下にそれぞれの大項目について説明する.

(1) 免震構造物の適合性判定

敷地地盤の条件,建物の用途や規模により設計者の工 学的判断にて免震構法の採否を決定する.

(2) 設計用入力地震動

耐震設計用の入力地震動は、標準的な地震動および免 震構造物が計画されている敷地の特性を充分表現しうる ものとする.

標準的な地震動は日本建築センターで公表されている 3 地震動とする。敷地の特性を表す地震動は、建設予定 地またはその近傍で観測されたものとする。

Table 2 に入力地震動とその強さを示す。入力地震動 はレベルに応じて最大速度の値を基準化して用いる。

(3) 予備応答解析

免震建物の全体系の一次固有周期などをパラメトリックに設定して質点系応答解析を行う.

その応答結果より適切な免震装置の数量、配置の資料

とするとともに上部構造の設計用せん断力係数の検討を 行う. 解析モデル
 上部構造を多質点系等価せん断型に置換する.免

Fig.1 免震建物設計フロー

Table 2 入力地震動波形の各レベルにおける強さ

	入力地震動名	最大加速度 (cm/s ²)	最大速度 (cm/s)	レベル1の 最大加速度 (cm/s ²)	レベル2の 最大加速度 (cm/s ²)	
1	EL CENTRO 1940 NS	341.70	33.45	255.38	510.76	
2	TAFT 1952 EW	175.95	17.71	248.38	496.78	
3	HACHINOHE 1968 NS 225.00 34.08 165.05 330.11					
4	免震建物建設子定地またはその近傍での観測地震動					

震装置部分は積層ゴムとリングダンパーの水平剛性 をスウェイバネ,積層ゴムの鉛直剛性をロッキング バネでそれぞれ評価する.

② 復元力特性 上部構造と積層ゴムについては線形とする。 リングダンパーの水平バネにのみ、実験で確認さ

れた固有の復元力特性を与える.

③ 減衰 上部構造のみに与える。評価方法はひずみエネル ギー比例型とし、減衰定数は構造種別に応じた適切 な値とする。

- ④ 入力地震動
 標準3地震動を用い、その強さはレベル1とする。
 (4) 上部構造・免震装置の設計
- ① 設計用せん断力係数 前項の予備応答解析から求まった結果を考慮して その分布形を決定する。
- ② 上部構造 設計用せん断力係数より求まる地震時応力および 長期応力を用いて断面算定を行う。
- ③ 免震装置の設計および配置 積層ゴムは設計用軸力を考慮して配置する。 リングダンパーは予備応答解析結果によりその 幅、組数を決定する。

配置は大きなねじれが発生しないようにする。

(5) 静的弾塑性解析

静的弾塑性解析により上部構造の荷重-変形関係を求 め、上部構造の変形量と崩壊過程を把握する。

- 解析モデル 上部構造は部材の非線形特性を考慮したモデルと
- する. その際, 免震装置の変位は拘束する. ② 水平外力

荷重増分法の水平外力分布は,予備応答解析結果 を考慮して設定する。

③ 保有水平耐力 崩壞過程において、はり・柱部材のせん断破壊を した場合または崩壊メカニズムに達した場合は解析 を終了する。

荷重-変形関係はその時点までを有効とし、その ときの層せん断力を保有水平耐力とする.

(6) 地震応答解析

設計された免震構造物を質点系モデルに置換し,弾塑 性応答解析を行う.

その解析結果により上部構造および免震装置の応答性 状を把握するとともに,耐震性能評価基準と比較するこ とで構造物の安全性を確認する。

解析モデル
 予備応答解析のモデル化の手法に進ずる。

② 復元力特性 上部構造の各層の復元力特性は、静的弾塑性解析 結果の荷重-変形関係をもとにスケルトンカーブを 設定し、構造種別に応じた適切な履歴特性を与えて 決定する。

免震装置については予備応答解析での評価法に準 ずる.

減衰
 予備応答解析の減衰の評価法に準ずる。

④ 入力地震動
 標準3地震動と地域特性を考慮した地震動とし、
 その強さはレベル1、レベル2とする。

§3. 免震建築物のモデル設計

§2.の設計法に従って、免震建築物のモデル設計を行う.

3-1 建物概要および構造計画概要

本免震建築物は、神奈川県大和市に建つ鉄筋コンクリ ート造4階建の研究施設で、上部構造部と基礎構造部の 間に免震装置を設置している.上部構造部は、Fig.2~3 に示すように平面形状21m×28mの長方形で、軒高 14.55m、基準階階高3.5mの純ラーメン構造である.基 礎構造部は、地中ばり、底盤、くい基礎により構成され、 1階柱直下の免震装置を介して、場所打ちコンクリート くいにより建物を支持する.免震装置は、積層ゴムとリ ングダンパーにより構成され、積層ゴムは1階柱直下に 各一個ずつ配置し、リングダンパーは中柱(6本)の回 りに設置して、方向性をなくすため4個一組とする.

Fig.3 2 通り軸組図

Table 3 予備応答解析による層せん断力係数

方向	階	EL CENTRO NS	TAFT EW	HACHINOHE NS	設計用
X 方 向	4 3 2 1	0.130 0.125 0.122 0.119	0.154 0.150 0.147 0.143	0.104 0.101 0.096 0.092	0.19 0.18 0.17 0.15
Y 方 向	4 3 2 1	0.137 0.131 0.125 0.121	0.155 0.152 0.148 0.143	0.106 0.103 0.098 0.094	0.19 0.18 0.17 0.15

なお、当該敷地地盤は第2種地盤である.

3-2 構造設計概要

(1) 一般事項

本免震建築物の構造設計にあたっては、「レベル1」お よび「レベル2」の2段階の地震動を考慮する。「レベル 1」地震動は建築物の耐用年数中に一度以上受ける可能 性の大きい地震動で、「レベル2」地震動は将来において 受けることが考えられる最強の地震動である。また「レ ベル1」、「レベル2」に対応する地震動波形を用いて地震 応答解析を行い、Table 1 の耐震性能評価基準を満足す ることを確認する。

なお、使用コンクリートは設計基準強度が F_0 =240 kgf/cmで、使用鉄筋は SD35 (鉄筋径 D19以上) および SD30 (鉄筋径 D16以下) であり、壁は ALC 板およびア ルミパック等を使用し非構造部材とした。

(2) 設計用地震力

積層ゴムおよびリングダンパーの組合せにより変化す る建物全体の一次固有周期をパラメーターとして適合固 有周期を決定し、そのときの免震装置を用いて上部構造 部の設計用地震力を決定するために、予備応答解析を行 った.解析モデルは免震装置下部を固定とし、上部構造 を5 質点系等価せん断型モデルとし,免震装置部分には スウェイバネおよびロッキングバネを考慮する.上部構 造部のせん断バネおよびロッキングバネは弾性とし復元 力特性は考慮しないが,スウェイバネはリングダンパー についてのみ実験から得られた曲線型の復元力特性を考 慮する.入力地震動波形は EL CENTRO1940NS, TAFT1952EW, HACHINOHE1968NSの3地震動 波形とし,レベル1に相当する大きさを採用する.以上 のような予備応答解析の結果による最大応答せん断力の 分布を考慮して,設計用地震力はベースシャー係数を 0.15とし, Table 3のように層せん断力係数を設定し た.

3-3 免**震装置の配置**

免震装置の配置にあたっては積層ゴムおよびリングダ ンパーの実験結果と設計用軸力および予備応答解析の結 果を考慮して配置する.

(1) 積層ゴムの配置

積層ゴムの配置は設計用長期軸力により積層ゴムが受ける面圧を中柱で70kgf/cm²,隅柱と側柱で50kgf/cm²以下となるように配置する.

(2) リングダンパーの配置

リングダンパーは4個一組として予備応答解析結果お よび施工等を考慮して配置する.

なお, Fig. 4 に免震装置の配置および Fig. 5 に免震 装置の取付詳細を示す.

3-4 地震応答解析概要

(1) 静的弾塑性解析

構造物の層せん断力と変形の関係および崩壊過程を把 握するために,上部構造の静的弾塑性解析を行う.この 結果から地震応答解析に用いる上部構造の層せん断力と

(cm)

0.0

Fig.7 応答解析モデル

層間変形関係を Tri-linear 型として定めた. 解析モデ ルは両方向とも1階柱下をピン支持とし, 各フレームは 剛床の仮程により連結されたモデルとする. また柱はり 部材は, 曲げせん断剛性をもつ線材とその両端に付く剛 塑性回転バネによりモデル化する. 外力としては予備応 答解析を参考に設定した設計用せん断力を用いて増分解 析を行った.

解析結果としては両方向とも1階の層せん断力係数が 約0.3となったとき,崩壊メカニズムを形成している.ま た Fig. 6 に崩壊に至るまでの層せん断力と層間変形関 係を示す.

- (2) 質点系弾塑性応答解析
- ①解析条件

免震建築物全体の応答性状を把握し、免震装置の 最大変形量および上部構造部の層間変形角等が免震 性能を満足することを確認するために、質点系弾塑 性応答解析を行った.Fig.7に示すように、解析モ デルは免震装置下部を固定とし、上部構造各階を質 点とする等価せん断型質点系モデルとする。免震装 置部分はスウェイバネ、ロッキングバネにモデル化 する.スウェイバネは積層ゴムとリングダンパーか ら構成されるが、積層ゴムの復元力特性については 弾性とし、リングダンパーにのみ復元力特性を考慮 する.そのモデルは実験で得られた特性を曲線型に モデル化する.またロッキングバネは基礎版の回転 中心を版の中点と仮定し、積層ゴムの鉛直剛性で評 価し弾性とする.Table4にロッキング、スウェイ バネの復元力特性を,Table5に応答解析の上部構

階	高さ	重量	水平剛性(tf/cm)		
	(cm)	(tf)	X 方向	Y 方向	
R	1,410	649.50			
4	1,060	613.58	577.5	536.2	
3	710	593.28	626.1	595.1	
2	360	609.06	752.4	736.1	
1	0	820.27	922.6	906.6	
回転慣性 (tf・cm)			5.36×10^{8}	3.02×10^{8}	

Table 5 応答解析諸元

造諸元を示す。

上部構造各層の復元力特性は静的弾塑性解析の結 果の荷重-変形曲線から Tri-linear 型のスケルト ンカーブにモデル化し、両方向とも Fig. 8 に示す Degrading-Tri-linear 型モデルとする. 減衰の評 価法はひずみエネルギー比例型とし、上部構造へ減 衰定数 h=0.02を与える. 入力地震動波形は標準的 地震動波形と当敷地で観測された昭和62年12月17 日の千葉県東方沖地震の記録を建物方向を考慮して 入力する. 2章で述べた Table 2 に、その地震動波 形と強さを示した.

② 固有值解析結果

上部構造および免震装置を含む系と上部構造のみ の弾性固有周期および刺激関数を Table 6~7 お よび Fig. 9~10 に示す.

③ 応答解析結果の検討

レベル1入力に対して,最大応答せん断力は両方 向とも設計用層せん断力以下となっており,上部構 造の最大応答層間変形角は X 方向で1/625以下, Y 方向で1/526以下となり,いずれも設計の目標値で ある1/200を下回っている.また免震装置の最大変 形は X 方向で8.73cm, Y 方向で8.71cmでありレベ ル1の評価基準の15cmを下回っている.

レベル2入力に対して、最大応答せん断力は両方 向とも保有水平耐力以下におさまっており、免震装 置の最大変形も X 方向で15.93cm, Y 方向で18.46 cmでありレベル2での評価基準の22.5以下となっ ている、塑性率においても評価基準の1.4以下とな っている、またレベル1、レベル2の入力に対して も基礎回転による積層ゴムの浮き上がりはみられな かった。

Table 6 固有周期(上部構造のみ)(秒)

	1次	2次	3次	4次
X方向	0.5217	0.1869	0.1251	0.0994
Y方向	0.5301	0.1944	0.1283	0.1009

Table 7 固有周期(免震装置を含む)(秒)

	1次	2次	3次	4次	5次	6次
X方向	1.3974	0.3141	0.1635	0.1186	0.0964	0.0263
Y方向	1.3998	0.3213	0.1673	0.1216	0.0977	0.0246

④ 非免震構造物との応答比較

免震効果を確認するため、「レベル1」、「レベル2」 の入力による非免震構造物の弾塑性応答解析も行い 応答量の比較を行った. Fig. 11~16 に応答解析 結果の比較を示す.以上の結果より免震構造物の加 速度・せん断力の最大応答値は「レベル1」,「レベル 2」ともそれぞれ非免震構造物の30~80%に,また 層間変位の最大応答値は10~65%に低減されるこ とがわかった.

Fig.10 刺激関数(免震装置を含む)(3次まで)

Fig.15 最大応答せん断力(レベル2)

§4.おわりに

西松式免震建物のモデル設計を行った結果,耐震性能 評価基準を満足することを確認し,また非免震建物と比 較するとその加速度,せん断力および層間変位の最大応 答値が65%~80%に低減され,充分な免震効果が期待で きることも確認できた.

さらに,立体応答解析による免震建物のねじれの検討, 入力地震動波形の最大速度値が75cm/s時の地震応答解 析についても検討してあり充分安全であることを確認し ている.

西松式免震構法の開発にあたり,指導をお願いした東 京大学松下清夫名誉教授に深く御礼申し上げます.

