能生トンネルにおけるトンネル先行変位の考察 (特性曲線法〈C&C 解析〉によるトンネル解析の一例)

An Investigation of Preceding Displacement at Nou-Tunnel

北川 隆* Takashi Kitagawa 粂田 俊男** Toshio Kumeta

一條 俊之*** Toshiyuki Ichijō 曽我 誠意*** Seii Soga

要 約

トンネル支保の設計には様々な手法が開発されているが、なかでも特性曲線法は地山の 力学的挙動を比較的簡便に把握できる手法である。本報文では、第三紀泥岩地山の比較的 土被りの深いトンネルで得られた先行変位計測データを基に、特性曲線法を用いて解析を 行い、結果をまとめたものである。特性曲線の展開式は、Hoek-Brown、Egger、Kastner の3手法を用い、各々に対応する物性値は岩盤分類別に特定化した。なお、本解析で使用 した物性値は電研分類の C_L級に該当している。その結果、トンネルの設計・施工に役立つ 応力・変位挙動、緩み領域、支保効果、最終変位量に関して有用な情報が得られた。特性 曲線法は、計測情報と設計施工情報を体系的に整理・評価できる有効な手法であると考え られる。

- 目 次
- §1. はじめに
- §2. 特性曲線法
- §3.特性曲線の設定
- §4. 先行変位測定結果
- §5. 先行変位測定解析
- §6. まとめ

§1. はじめに

トンネル計測データの利用としては、大別して掘削後 のトンネルの安定評価と、支保と地山の相互作用を解明 して設計・施工に役立てる2つの方法がある。前者は、 変位計測を中心として統計的な手法を用いた評価法がト ンネルの実施工で適用されている.後者は,数値解析や 理論解析を中心として様々な方法が提案されている.と ころが,数値解析は,往々にして現実の支保と地山との 関係をうまく表現できず,設計技術者を悩ますところと なっている.これは,解析におけるパラメータが複数で あり,その設定に関して総合的な判断を要求されるから である.そのなかで,理論解析を利用した特性曲線法は 解析上のパラメータの設定も少なく,比較的簡便に地山 の力学的挙動を把握できる手法として注目されてきてい る.¹⁾

一般に変位計測はトンネル掘削後行われ,解析で問題 となる計測以前(トンネル掘削以前)の変位挙動は仮定 によるところが大きい.特に,塑性的な挙動を示す地山 では,いわゆる先行変位の把握がトンネルの安定や支保 の設計を行う上で重要となる.しかし,先行変位測定は, 坑口付近の比較的土被りの薄い区間の測定例はあるが, 膨張性泥岩でしかも土被りの厚い区間での実施例は極め て少ない.

^{*}土木設計部設計課副課長 **橫浜(支)山梨雁坂(出)工事係長

^{***}土木設計部設計課

筆者らは、北陸自動車道の第三紀泥岩地帯にある能生 トンネルにおいて、土被り80mの地点での先行変位計測 データを得ることに恵まれた。計測データを基に種々の 解析を実施したところ、特性曲線法によるトンネル周辺 地山の変形応力解析がトンネル掘進中の現場における支 保設計に役立つと思われるのでここに紹介する。

§ 2. 特性曲線法(Convergence-Cofinement Method)

特性曲線とトンネルの力学的挙動の概念を Fig. 1 に 示す、この図に示す、

- ① 特性曲線
- ② 変位曲線
- ③ 応力解放率曲線

のそれぞれの曲線は、2つの曲線の組み合わせで他の1 曲線が得られる関係となっている.なお,塑性領域 w(= r_e-r_i)と支保地山応力比 p_i/p₀の関係は、これら3曲線 を求める過程で得ることができる.

特性曲線法(以下 C&C 解析と称する)は、上記の3 曲線を利用してトンネルの変位および緩み領域(塑性領 域)、安定のために必要な支保材料仕様(支保内圧,支保 剛性)等を検討する手法である。

ただし、①を求めるには適用するトンネル地山の物性 値が特定化される必要があり、②を求めるにはトンネル の先行変位を含んだ変位挙動を把握する必要がある.ま た、③は①と②が得られなければ FEM などの数値解析 で求めるため、複数のパラメータの設定が必要である.

本著の C&C 解析は、特性曲線と変位曲線を把握する 方法で行った。

§3.特性曲線の設定

特性曲線の展開式には,様々な方法が提案されている が本著では,Hoek-Brown,Egger,Kastnerの3式を 用いる。

- 3-1 仮定条件 (Fig. 1)
 - 1. 二次元平面歪状態(トンネル進行方向変位なし)
 - 2. 等方等質弾塑性地山,初期地圧は静水圧 (po)
 - 支保効果(等分布の放射荷重として支保内圧(p_i) を評価)
 - 4. トンネルは円形
- 3-2 釣合方程式

$$\frac{d\sigma_r}{dr} + \frac{\sigma_r - \sigma_t}{r} = 0 \tag{1}$$

境界条件

Fig.1 C & C 解析概要

 $r = r_e; \ \sigma_r = \sigma_{re}: \ r = \infty; \ \sigma_r = p_o: \ r = r_i; \ \sigma_r = p_i$ (2)

3-3 塑性条件

 Hoek-Brown²⁾の方法 Hoek-Brown は次の実験式を提案している。
 弾性域

$$\sigma_1 = \sigma_3 + \sqrt{m\sigma_c\sigma_3 + s\sigma_c^2} \tag{3}$$

塑性域

$$\sigma_1 = \sigma_3 + \sqrt{m_\tau \sigma_c \sigma_3} + s_\tau \sigma_c^2$$
 (4)
ここに、 σ_1 、 σ_3 :最大および最小主応力
 σ_c :インタクトロックの一軸圧

縮強度

m, s, *m*_r, s_r:弾性時及び塑性時の 岩石の材料定数

である.

この方法は、Q値で設定される材料定数を用いて、 インタクトロックの一軸圧縮強さを低減させて現位置 岩盤を評価し、現実的なトンネル周辺岩盤の解析を行 っていることに特徴がある。

これより、トンネル周辺地山の弾塑性判定式が導か れる。

$$\frac{p_{icr}}{p_o} = 1 - M \frac{\sigma_c}{p_o} \le \frac{p_i}{p_o} : 弾性領域$$
(5)

$$\frac{p_{icr}}{p_o} = 1 - M \frac{\sigma_c}{p_o} > \frac{p_i}{p_o} : 塑性領域$$
(6)

ここに, $\frac{p_{icr}}{p_o}$;塑性限界応力比

$$\frac{p_i}{p_o}; 支保地山応力比$$
$$M = \frac{1}{2} \sqrt{\left(\frac{m}{4}\right)^2 + \frac{mp_o}{\sigma_c} + s} - \frac{m}{8} \qquad (7)$$

② Egger³, Kastner⁴の方法
 ここでは、モール・クーロンの降伏条件式を用いている。

$$\sigma_{1} = \sigma_{3} \frac{1 + \sin \phi}{1 - \sin \phi} + 2C \frac{\cos \phi}{1 - \sin \phi}$$
(8)
ここに、 σ_{1} 、 σ_{3} :最大及び最小主応力
 C :岩盤の粘着力
 ϕ :岩盤の内部摩擦角

この条件式には強度定数の低減は考慮されておら ず,現位置岩盤としての強度定数を評価する場合には, 亀裂係数などによる低減率を乗じる必要があることに 注意すべきである.

なお、トンネル周辺地山の弾塑性判定式を以下に示 す.

$$\frac{p_{icr}}{p_o} = (1 - \sin\phi) - C \frac{\cos\phi}{p_o} \le \frac{p_i}{p_o}$$
:弾性領域 (9)

$$\frac{p_{icr}}{p_o} = (1 - \sin\phi) - C \frac{\cos\phi}{p_o} > \frac{p_i}{p_o} :$$
 塑性領域 (10)

3-4 応力-変位関係式

(1) 弾性地山におけるトンネル壁面変位

$$u_i = \frac{1+\nu}{E} (p_o - p_i) r_i \tag{11}$$

- (2) 塑性地山におけるトンネル壁面変位
- ① Hoek-Brownの方法

$$u_i = r_i \left(1 - \sqrt{\frac{1 - e_{av}}{1 + A}} \right) \tag{12}$$

ここに、 $E:弾性係数、v:ポアソン比、r_i:トンネ$ ル半径、 $r_e:弾塑性境界面までの半径$

$$M = \frac{1}{2} \sqrt{(\frac{m}{4})^2 + \frac{mp_o}{\sigma_c} + s} - \frac{m}{8}$$
(13)

$$A = \left\{ \frac{2(1+\nu)}{E} M \sigma_c - e_{av} \right\} \cdot \exp\left(2N - \frac{4}{m_r \sigma_c} \sqrt{m_r \sigma_c p_i + s_r \sigma_0^2}\right)$$
(14)

$$N = 2 \sqrt{\frac{(p_o - M\sigma_c)}{m_r \sigma_c} + \frac{s_r}{m_r^2}}$$
(15)

$$e_{av} = \frac{2(u_e/r_e)(r_e/r_i)^2}{\{(r_e/r_i)^2 - 1\}(1 + 1/R)}$$
(16)

$$\frac{r_e}{r_i} < \sqrt{3} ; R = 2D \cdot \ln\left(\frac{r_e}{r_i}\right) \tag{17}$$

$$\frac{\gamma_e}{\gamma_i} > \sqrt{3} ; R = 1.1D \tag{18}$$

$$\mathbb{CCE}, D = -m/\left\{ m + 4\sqrt{(\frac{m\sigma_{re}}{\sigma_c}) + s} \right\}$$
(19)

② Egger の方法 (急激な劣化モデル)

$$u_i = \frac{C_{st}}{r_i^a} + \frac{1-\nu^2}{E} \cdot p_i p_o \left(\frac{1+a\lambda_p}{a+\lambda_p} - \frac{\nu}{1-\nu}\right) \quad (20)$$

$$C_{st} = r'^{a} u_{\mathsf{R}}' - \frac{1 - \nu^{2}}{E} \cdot r'^{a+1} \frac{2p_{o} - \sigma_{c}}{\lambda_{p} + 1} \left(\frac{1 + a\lambda_{p}}{a + \lambda_{p}} - \frac{\nu}{1 - \nu} \right)$$
(21)

$$r' = r_i \left\{ \frac{2p_o - \sigma_c}{p_i(\lambda_p + 1)} \right\}^z \quad ; \quad z = \frac{1}{\lambda_p - 1} \tag{22}$$

$$u_{\rm R}' = \frac{1+\nu}{E} r' \left\{ 2(1-\nu) p_o - \frac{2p_o - \sigma_c}{\lambda_p + 1} \right\}$$
(23)

$$\sigma_c = \frac{2C \cdot \cos \phi}{1 - \sin \phi} ; \ \lambda_p = \frac{1 + \sin \phi}{1 - \sin \phi}$$
(24)

$$a = -\frac{\frac{\dot{\epsilon}}{\varepsilon_{rpl}}}{\varepsilon_{tpl}}$$

$$\dot{\epsilon}_{rpl}$$
半径方向塑性歪速度
$$\dot{\epsilon}_{tpl}$$
(5)

$$u_{i} = \frac{1+\nu}{E} (p_{o} - \frac{2p_{o} - \sigma_{c}}{1+\lambda_{p}}) \frac{r'^{2}}{r_{i}}$$
(26)

ここに,

$$r' = r_{i} \left[\frac{2 \left\{ p_{o}(\lambda_{p} - 1) + \sigma_{c} \right\}}{(1 + \lambda_{p}) \left\{ p_{i}(\lambda_{p} - 1) + \sigma_{c} \right\}} \right]^{z} ; z = \frac{1}{\lambda_{p} - 1}$$
(27)

$$\sigma_c = \frac{2C \cdot \cos\phi}{1 - \sin\phi}; \ \lambda_{\rho} = \frac{1 + \sin\phi}{1 - \sin\phi} \tag{28}$$

Hoek-Brown, Egger, の方法は, 塑性後の強度劣化 および体積膨張を考慮しているが, Kastner の方法は, これらを考慮していない.

3-5 岩盤分類と地山特性

著者らは、Bartonの Q値による材料定数の低減を行 うことにより Hoek-Brown の方法が実際の地山挙動 とよく一致することを確認している⁵⁾. このときの岩盤 分類(電研式)に対応する材料定数を Table 1 に示す. また、Table 2 は Egger、Kastner の塑性限界応力比 (式(9))が Hoek-Brown の塑性限界応力比(式(5))に 対応するように C、 ϕ を求めたものである⁷⁾. ただし、 初期地圧 p_o は、一般的な土被りのトンネルを考慮して、 5~30kgf/cm⁴の範囲とした.

3-6 緩み荷重の考慮

式(11)~(28)で定義された所要支保曲線は、トンネル側壁 部 (水平方向)の挙動を示すものと考えられる。トンネ ル天端は、破壊した岩盤の死荷重のための余裕を Hoek-Brown に従って考慮するために、支保王力 $p_i e_\gamma$ γ ($r_e - r_i$) だけ増大させて補正評価する (Fig. 1).

岩盤分類	· · · · · ·	インタクトロックの 一軸圧縮強 度 σ ₀ (kgf/cm ²)	岩 盤 の 変形係数 E (kgf/cm ²)	塑性前の	D材料定数	塑性後の)材料定数	強度定数		
	Q 値			m	s	mr	Sr	C (kgf/cm²)	ϕ (deg)	
В	$l < Q \leq 4$	500	100,000	0.4	0.0006	0.1	0.00003	$40 \sim 60$	$55 \sim 65$	
Сн	$0.4 > Q \le 1$	500	50,000	0.2	0.00008	0.04	0.00001	24~40	$45 \sim 55$	
См	0.1 <q≦0.4< td=""><td>500</td><td>15,000</td><td>0.1</td><td>0.00004</td><td>0.03</td><td>0.00001</td><td>10~24</td><td>$38\!\sim\!45$</td></q≦0.4<>	500	15,000	0.1	0.00004	0.03	0.00001	10~24	$38\!\sim\!45$	
CL	$0.01 < Q \le 0.1$	500	4,000	0.03	0.00001	0.01	0	4~10	30~38	
D	$0.001 < Q \le 0.01$	500	1,000	0.01	0	0.001	0	0~4	15~30	

Table 1 岩盤分類に対応する材料定数と強度定数

Table 2 塑性限界応力比対応表

岩盤タ	 分類	塑性限界応力比(p _i /p ₀) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	粘着力C (kgf/cm ²)	内部摩擦角¢ (deg)
В	1 2		2.0	55
Сн	1 2		1.25	45
См	$\stackrel{(1)}{(2)}$		0.5	38
CL	1) 2)		0.25	30
D	$\stackrel{(1)}{(2)}$		0.1	15

1) Hoek-Brown 2) Egger, Kastner

§4. 先行変位測定概要

4-1 地形・地質概要

能生トンネルは,新潟県の南端,糸魚川市と上越市の ほぼ中間に位置する,延長2,992mの長大高速道路トン ネルである.

地質は、第三紀泥岩層に属する能生谷層の泥岩を主体 として、西坑口付近には川詰層・名立層が分布している. これら泥岩層は、泥岩・シルト岩を主体として構成され ており、凝灰質で固結度の低い粘土~シルトの薄層を介 在する。Fig.2は、本工区の地形・地質の縦断図である. STA.232付近より、第三紀泥岩の特性である膨張性変形 の兆候が認められるようになり、STA.225+20付近で は、内空相対変位が250mmにも達している.

当該工区では、膨張性変形挙動の認められる区間にお いて、先行変位測定を実施した。以下にその測定要領を 概説する。

4-2 計測概要

先行変位測定は、膨張性泥岩で、しかも土被りの厚い 区間での実施例は極めて少ない. そこで、糸魚川坑口か ら1,375m 付近、土被り約80mの3断面(STA.224+ 00, STA.224+10, STA.224+20) において,先行掘 削された作業坑より本坑に向けて地中変位計を設置し, 本坑掘進にともなう地山の先行変位測定(計測工 C)を 実施した^{10)~13)}.計測は,本坑上半切羽到達前約100mよ り測定を開始し,全切羽通過後変位が収束するまで継続 した.

さらに、同一断面においては一般に実施される本坑内各 種計測(計測工 A・B)も併せて実施した(Fig. 3~4). 計測工 A;内空相対変位、天端沈下、盤膨れ

計測工 B:地中相対変位(8m×6点用×5測線)

ロックボルト軸力(4m×4点用×5測線)

```
土圧・覆工応力(3ヶ所)
```

計測工 C; 地中変位計

No.1 (STA.224+20):37m×7点用

No.2 (STA.224+10):31m×6点用

No.3 (STA.224+00):37m×7点用

Fig.5は、先行変位計測地点のボーリング調査図であ るが、黒灰色泥岩を主体とするなかに青灰色の未固結シ ルト薄層を介在した地層である.ここで、STA.224+00 および STA.224+20は泥岩が主体で棒状コアが多く採 取されているのに対し、STA.224+10では介在する未

Fig.2 能生トンネル西工区地質縦断

Fig.3 先行変位測定要領

Fig.4 本坑計測工

固結シルト薄層部のコアが流失してしまうなど弱層が目 立った.

4-3 測定結果

(1) 計測工 C

測定データの経日変化グラフを Fig.6 に示す、図中1 ~8の番号は、本坑壁面からの水平深度(m)を示し、①、 ①、①は各々上半、下半、インバートの切羽がその測定 断面を通過した日(経日)を示している。

Table3は、先行変位率を次式で定義した時の、各測 点における先行変位率を示したものである.

> $\kappa = (\frac{\delta_p}{\delta_t}) \times 100\%$ (29)

ここに, κ;先行変位率

δ,;切羽が到達するまでの変位量

♂;切羽通過後の収束変位量

先行変位率の平均値は上半掘削時に対して44%、最終 変位量に対して13%という結果になった。ここで、No.1、 No.3 はほぼ近値となったものの, No.2 はバラつきが大き い、これは、前述のとおり弱層の影響により変位量自体

NO. 1 STA. 224+20 80 60 変 位 40 量 20 (mm) (m) -20120 100 2040 60 80 経 日 地中相対変位(計測工C) NO. 2 STA. 224+10 80 0 D Ē 60 変 40位 量 20(mm) 0 (m -20100 120 ō 20 60 80 40経 Н 地中相対変位(計測工C) STA. 224+00 NO. 3 80 Û 60 変 億 40 量 20 (mm)

Fig.6 先行変位測定結果

40経

60

H 地中相対変位(計測工C)

80

(m)

120

100

Table 3 先行変位測定結果

0

20

-20

測	点	STA ₀			224	+20					224	+10					224	+ 00		
深	度	(m)	1	2	3	4	6	8	1	2	3	4	6	8	1	2	3	4	6	8
麥	切对	团通過時	4.5	3.7	2.4	2.5	1.9	0.5	5.5	3.2	1.4	2.2	1.2	2.2	7.8	7.3	6.3	4.0	3.8	2.7
位景	Ŀ	半時	8.8	8.6	6.9	5.8	3.2	1.8	17.0	6.8	6.8	4.0	3.0	3.0	19.2	16.7	13.5	7.8	8.0	6.8
里 (mm)	最	終時	26.3	25.1	23.8	22.6	11.7	5.0	42.4	28.7	26.3	33.7	23.4	12.0	49.6	43.7	36.1	23.6	23.0	21.1
<u>н</u>	Ŀ	半時	51.1	43.0	34.8	43.1	59.4	27.8	32.4	47.1	20.6	55.0	40.0	73.3	40.6	43.7	46.7	51.3	47.5	39.7
九	最	終時	17.1	14.7	10.1	11.1	16.2	10.0	13.0	11.1	5.3	6.5	5.1	18.3	15.7	16.7	17.5	16.9	16.5	12.8
変位	平	上半時 最終時	43.2 13.2							44.7 9.9				44.9 16.0						
率 (%)	値	上半時 最終時									44 13	4.3 3.0								

がバラついたためと思われる.

また,上半収束値と最終変位量との比率に着目すると, おおむね1:3の関係があることがわかる.この比率は トンネル全線に通じての傾向である.

(2) 計測工 A・B との比較整合

Fig. 7はSTA.224+20の計測工 C と計測工 A・B の変位測定結果を、上半切羽通過時を基準線(①)とし て並べたものである。天端沈下グラフを除いて、上半時、 下半時とも挙動が同一の傾向を示した。上半時の収束変 位量に対し、掘削完了後の収束変位量が約3倍であるこ とも共通している。これらの結果より、先行変位測定値 が信びょう性の高いデータであると考え、以下に述べる 解析を実施した。

Fig.7 変位測定結果の整合

§5. 先行変位測定解析

5-1 変位曲線の近似

Table 3の先行変位率を平均化して定量的に求める ため、切羽進行と計測工 Cの変位の関係の指数回帰曲線 近似を試みた.その結果、変曲点 (x_1, δ_1) に関して点対 称な関数 (式 (30), **Fig. 8**) が、比較的簡単な関数とし てよく近似できた.

$$\delta = A \cdot [1 - \exp\{-(x - x_1)\beta\}] + \delta_1; \quad (x - x_1) \ge 0 \qquad (30)$$

$$\delta = A \cdot [1 - \exp\{-(x - x_1)\beta\}] + \delta_1; \quad (x - x_1) < 0 \qquad (31)$$

$$\texttt{ccc}, \ \mathbf{x} = \ (\frac{\delta_p}{2A}) \times 100\%$$

- κ:先行変位率
- δ₀:上半切羽到達時の変位量

そこで、Na1~Na3の平均的な変位曲線を近似す るために、水平深度別に3断面の平均変位量に対す る曲線近似式を求めた (Fig.9). 解析にあたり、上 半、下半各々別々に-3d - 3d (d=10m)の範囲内 のデータを採用して個々の近似曲線を求め、これを つなぎ合わせている. このときの上下半別の係数 *A*、 β と先行変位率 x を Table 4 に示す.

Fig.8 変位近似曲線

(注)図中の番号はトンネル壁面からの深度(m)
深度1mの曲線の式は
(上半) Y=7.434・(1-EXP(-(X-0.060)・3.251))+7.434
(下半) Y=10.787・(1-EXP(-(X-0.136)・1.678))+25.655

Fig.9 変位曲線近似式

浿	点番号	1	2	3	4	6	8	平 均
۱ ۲.	A(cm)	7.434	5.839	5.307	3.625	2.829	2.048	4.467
	β	3.251	2.577	2.044	1.932	1.719	2.959	2.435
半	先行 変 位率κ	41.1	42.1	50.0	39.6	38.8	36.1	40.8
下	A(cm)	70.787	9.621	9.101	8.998	7.058	4.525	8.348
	β	1.678	1.943	1.640	1.325	1.393	1.581	1.593
半	先行 変 位率κ	39.8	38.4	36.8	34.7	32.3	27.5	34.9

Table 4 特性曲線関数の係数

Table 5 計測工Cから補正して求めた壁面変位(特性曲線A)

	トンネル半	計測位置	補正率	壁	面	変	位
	径r _i (m)	<i>r</i> j(m)	r_j/r_l	(補 正	後の物	寺性曲	線 A)
上半モデル	4.0	5.0	1.25	y=9.5(1	-exp(-($x = 0.09) \cdot 2$	2.5) + 9.5
全断面モデル	5.0	6.0	1.20	y=13.0(1-exp(-	(x-0.27)	1.6) + 32.0

Fig.10 C & C 解析例

	_1	: 半 -1	モデ	ル	全断面	モデル	
些胜曲如何	上半切	羽到達時	上半4	仅 束 時	全断面時(変位収束時)		
村住田禄の モデル	$p_i/p_0^{(1)}$	応力解放率 (%)	$p_i/p_0^{(1)}$	応力解放率 (%)	pi/po ⁽¹⁾	応力解放率 (%)	
Hoek-Brown	0.63	37	0.47	53	0.37	63	
Egger	0.63	37	0.29	71	0.17	83	
Kastner	0.63	37	0.25	75	0.11	89	
備考	計 測 値 (mm)	変位比率 (%)	計 測 值 (mm)	変位比率 (%)	計 測 値 (mm)	変位比率 (%)	
	7.6	17(40) ⁽²⁾	19.0	42	45.0	100	

Table 6 応力解放率のまとめ

注1) p₀=15.8kgf/cm² (土被り圧)

注2) () は上半収束値に対する変位比率

注3) 計測値は計測工Cの近似曲線(3断面の平均値)から得られた値。

(33)

Table 4 から、上半切羽到達時の κ は深度により 多少の差はあるが、平均40%であることがわかる.

5-2 C&C 解析

C&C による,能生トンネルの解析結果を以下に示 す.ここに,特性曲線は C_L級のものを使用する.ま たトンネル壁面変位(変位曲線近似)は,4-3に て求めたトンネル壁面から深度1mの地中変位曲 線の平均値を基に,以下の補正方法を用いる.

$$\delta_i = \left(\frac{r_j}{r_i}\right) \times \delta_j$$
 (32)
ここに、 $\delta_i : トンネル壁面変位 (r = r_i)$
 $\delta_j : 測 定 変 位 (r = r_j$
 $= r_i + j)$

(壁面からの水平深度=j=1.0m)

トンネル半径は掘削断面積の等しい円の半径とし て評価し、上半モデルでは $r_i = 4$ m、全断面モデル では $r_i = 5$ m とする.なお、上半の変位曲線近似式の 係数 β は上半の平均値とし、 x_1 、 δ_1 は上半時に対する 先行変位率が40%となるように設定している.下半 についても同様である.Table 5 は補正後の変位曲 線近似式の結果である.

これによれば、上半切羽到達時の先行変位量は、 式(31)により計算される。

 $\delta_{p} = 2A \times 40/100 = 2 \times 9.5 \times 0.4 = 7.6 = 8 \text{ mm}$

(1) 応力解放率

当解析において,応力解放率は支保地山応力比を 用いて,次式で求められる.

$$\boldsymbol{\omega} = (1 - \frac{p_i}{p_0}) \times 100\% \tag{34}$$

また,このときの変位解放率は先行変位率と同様 にして,次式で求められる.

$$\kappa = \left(\frac{\delta}{\delta_t}\right) \times 100\%$$
 (35)
ここに、 κ ;変位解放率

♂;このときの変位量

なお、変位比率 λ は、特性曲線を Fig. 1 に示す直 線④で表現される地山が支保材を含んだ等価弾性体 として考えた場合の応力解放率に相当する。一方、 C&C 解析から得られる解放率は、地山そのものの応 力解放率である。それぞれの解放率は、地山が弾性 体であれば $\omega \ge x$ 、塑性体であれば $\omega < x$ の関係に なる。

C&C 解析の例として, Hoek-Brown の特性曲線 と変位曲線の組み合わせを Fig. 10 に示す. この図 から変位比率 x と変位に対応した応力解放率 ω を 読みとることができる.

Table 6は、補正後の変位曲線近似式を基に、 Hoek-Brown, Egger, Kastner の計算式を用いて求 められた応力解放率を、各施工段階別に示したもの である。上半モデルに対し、上半切羽到達時の変位 解放率(先行変位率)が40%であり、応力解放率も 37%とほぼ一致している。変位解放率と応力解放率 との一致は、トンネル周辺地山の挙動特性が弾性的 であることを示している。すなわち、上半支保が、 トンネル周辺地山の緩み(塑性化)を防止している ことになる。

下半切羽到達前後の変位挙動は上半時のものとか なり異なる. Table 6 に示すように,上半収束時か

	逆解析	Hoek-Brown	Egger	Kastner	
上半収束時	0.7 m	1.6 m	1.2 m	1.3 m	
下半到達時	2.6	2.4	1.9	2.3	
全断面時	4.3	4.2	3.6	4.2	
Att b.	限界せん断歪	破壞規準	破壞規準	破壞規準	
開ち	$\gamma_0 = 1.0\%$	Hoek-Brown	Mohr-Coulomb	Mohr-Coulomi	

Table 7 塑性領域算定結果

Table 8 逆解析算定結果

測点	変 形	係数	側圧係数
STA.	E1 (kgf/cm ²)	$E2~(\mathrm{kgf/cm^2})$	K
224 + 20	3600	2200	1.2
224 + 10	2500	1500	1.0
224 + 00	3200	1900	1.0
平均值	3100	1900	1.1

注) E1は先行変位を無視した値, E2は先行変位を考慮した 値を示す。

ら全断面時までの応力の解放率の増加は,計算式に より若干異なるが,おおむね10~15%である.一方, この間における変位の増加は全体の58%も占めてい る.すなわち,下半到達前後から,地山は小さな応 力の変化で大きく変形していることになり,これは 塑性変形が支配的であることを示すものである.こ のように,塑性変形が支配的になると,変位の解放 率と応力の解放率に大きな差が生じることに注意す べきであろう.

(2) 塑性領域

Table 7 は、C&C で得られたトンネル周辺に生じ る塑性領域と、逆解析から求められた塑性領域(限 界歪1%と設定)を比較してまとめたものである。 これから、上半収束時は C&C で得られた値が逆解 析結果と比較して 2 倍ほど大きいが、下半掘削後の 塑性領域はおおむね一致していることが分かる。

これは、逆解析からトンネルの応力状態は側圧係 数1.0~1.2でほぼ静水圧状態と推定されており (Table 8 参照)、逆解析の形状も下半掘削後は円形 モデルに近づき、C&Cの仮定条件と適合してきたた めと考えられる.

(3) 支保効果

支保は、トンネル壁面の変形に対しあたかもバネ のように反力(支保内圧)を発揮する。本トンネル の支保が、どの程度の支保内圧と剛性を発揮してい るかを考察するために、計測変位と特性曲線を組み

Fig.11 支保反力と支保剛性

合わせて解析してみる。当解析の仮定条件は,以下 のとおりである。

《仮定条件》

- 支保剛性は, Fig. 11 に示す関係により求められる。
- 水平方向変位は、Table 5 に示す壁面変位を 用いる。
- ③ 鉛直変位(天端沈下)は、3計測地点の平均

		Н	loek-Brov	vn	Egger			Kastner		
		p_i/p_0	₽i	k	pi/po	Þі	k	pi/po	<i>p</i> i	k
上坐の声時	水平変位(mm) 19	0.47	7.4	2700	0.29	4.6	1660	0.25	4.0	1440
上于収모時	鉛直変位(mm) 55	0.37	5.8	500	0.16	2.5	220	0.13	2.1	170
	水平変位(mm) 26	0.45	7.1	1870	0.26	4.1	1080	0.22	3.5	910
▶ 手到運時	鉛直変位(mm) 100	0.36	5.7	310	0.17	2.7	150	0.15	2.4	130
全断面時	水平変位(mm) 45	0.37	5.8	770	0.17	2.7	350	0.11	1.7	230
	鉛直変位(mm) 137	0.34	5.4	210	0.17	2.7	100	0.16	2.5	100

Table 9 支保地山応力比と支保剛性のまとめ

注1) pi kの単位は kgf/cm²

注2) 水平変位は計測工Cの近似曲線(3断面の平均値)から得られた値. 鉛直変位は,天端沈下測定結果+先行変位8mm.

	計測	钊 值	Hoek-	Brown	Eg	ger	Kas	tner
	水平変位 _{UH} (mm)	鉛直変位 _{Uv} (mm)	水平変位 _{UH} (mm)	鉛直変位 <i>uv</i> (mm)	水平変位 <i>u_H (mm)</i>	鉛直変位 uv (mm)	水平変位 <i>u_H</i> (mm)	鉛直変位 uv(mm)
t alk dit skint	19	55	40	55	38	55	35	55
工于収界時	0.	35	0.	62	0.	69	0.	64
T W dt mt	26	100	50	100	45	100	40	100
下于収果時	0.	26	0.	50	0.	45	0.	40
人名法尔尔	45	137	50	137	45	137	40	137
生断肌時	0.	33	0.	36	0.	33	0.	29

Table 10 鉛直/水平変位算定結果のまとめ

Fig.13 特性曲線による変位予測例

値を用いる. なお, このとき先行変位量(8 mm) を考慮する (式(33)参照).

計算結果の例を Fig. 12 に, まとめを Table 9 に 示す.

Table 9 に示すとおり支保内圧,支保剛性の最大 値は,各々7.4kgf/cm,2700kgf/cmである.水平方向 の鉛直方向に対する支保剛性率(k_{ii}/k_{iv})は,上半収 束時が5~8,全断面時が2~3であり,上半断面時の 水平方向の剛性が大きいことが分かる.ところが, 下半掘削後水平方向の剛性は大きく低下する.支保 剛性は,断面形状,支保形式等による変位拘束効果 を示す指標であり,当解析結果では上半時は鉛直方 向にたわみ易く,下半施工時には水平方向がたわみ 易くなることを示している.

次に,水平,鉛直方向の支保圧比(p_{iH}/p_{iv})に着目 すると,上半収束時1.3~2.0であるのに対し,全断 面時には約1.0になっていることが分かる.これよ り,支保内圧の分布は,最終的には等圧分布放射状 態になるものと考えられる.

そこで、水平、鉛直の支保圧が等しい $(p_{iH} = p_{iv})$ と考え、Fig. 13 のように鉛直変位 (u_v) から特性曲 線を利用して水平変位 (u_H) を求める、計算結果と 実測値との比較を Table 10 に示す.

得られた水平変位は、全断面収束時に近づくに従って、計測値と適合性の良いものになることが読み 取れる.これは、当手法により最終状態でのトンネ ルの力学的挙動の把握が可能であることを示唆して いるものと考えられる.なお、最終時のトンネル支 保内圧は計算式により差があるが、2.5~5.5kgf/cm² である.

§6. まとめ

著者らは、電研分類別に特定化した特性曲線に基 づき C&C 解析を行い、能生トンネルの先行変位測 定解析を行った。解析フローチャートを Fig. 14 に 示す。その結果、以下の項目について計測結果との 定量的な整合性を把握できることが分かった。

① 応力変位挙動の把握

応力解放率、先行変位率を求めることで、上

Fig.14 C&C解析フローチャート

半時,下半時の変位挙動の相違が把握できる.

② 緩み領域(塑性領域)の把握

変位過程における塑性領域(緩み幅)が把握 できる.

- ③ 支保効果(支保剛性,支保内圧)の把握 トンネル支保に発生する鉛直,水平支保剛性 とその比率(k_{iii}/k_{iv})を評価することにより,鉛 直方向,水平方向のどちらにたわみ易くなって いるのかが分かる。また,必要支保内圧を把握 することにより,支保パターンの検討が行える。
- ④ 最終変位量(鉛直変位,水平変位)の把握 支保圧比(p_{in}/p_{iv})一定と仮定して,変位量を 鉛直(天端沈下),水平変位(内空変位)につい て予測できる。

特に,最終変位量及び最終塑性領域を比較的簡便 に予測できることは,施工計画時及び工事(設計) 変更時において非常に重要なことである.

能生トンネルにおける今回の解析では、上半施工 時はほぼ弾性的挙動を示し、上半収束値に対する先 行変位率が30~40%であることが分かった.この点 に関しては、更に多くの計測事例に当手法を適用し て検討を重ねる必要がある.

今後のトンネル計測,施工計画,工事(設計)変 更に当手法が参考になれば幸いである.

謝辞 末筆ながら、貴重な御意見、御指導を賜っ た皆様、能生トンネルの先行変位計測工事の関係諸 氏に、紙面をかりて御礼申し上げます。

参考文献

- Reccommendations for Use of Convergence-Confinement Method : P. Gesta, Tunnels Et Ouvrages Souterrain, No.73, Janvier-Fevrier, 1986
- 2) Hoek-Brown(小野寺透, 吉中龍之進他訳):岩 盤地下空洞の設計と施工, 土木工学社
- P. Egger:トンネル支保工に及ぼす破壊後の 岩盤の影響、トンネル技術協会、1978年
- H. Kastner: Static des Tunnel und Stoiienbaues (金原弘訳「トンネルの力学」, 森北出版, 1974年
- 5) 北川隆:岩盤分類と岩盤-支保相互作用解析, 第19回岩盤力学に関するシンポジウム, 1987年
- 6) 桜井春輔,竹内邦文:トンネル掘削時における 変位計測結果の逆解析法,土木学会論文報告集第

337号,昭和58年3月

- 7)北川隆,一條俊之,曽我誠意:岩盤分類と特性 曲線に関する一考察,土木学会第42回年次学術講 演会講演概要集第3部,昭和62年9月
- 8) 地山評価のあり方に関する研究:日本トンネル 技術協会,昭和60年2月
- 9) 菊地宏吉,斉藤和雄,楠建一朗:ダム基礎岩盤の安定性に関する地質工学的総合評価について, 第14回国際大ダム会議提出論文,昭和57年
- 10) 佐藤正彦,安川正春,粂田俊男:北陸自動車道 能生トンネルにおける先行変位測定,第22回土質 工学会研究発表会論文集,昭和62年6月
- 11) 佐藤正彦,安川正彦,竹國一也,粂田俊男:新 第三紀泥岩(能生谷層)におけるトンネル変位と 地山特性,第22回土質工学会研究発表会論文集, 昭和62年6月
- 12) 佐藤正彦,安川正春,矢野尚彦,粂田俊男:能 生トンネルの変位特性と支保効果,トンネルと地 下 Vol.18, No.9, pp.25~35
- 13) 佐藤正彦,安川正彦,北川隆,一條俊之,曽我 誠意:特性曲線法によるトンネルの先行変位の考 察,第7回岩の力学国内シンポジウム講演論文集, 1987年12月