現場計測にもとづく大規模山留め掘削 (京葉・都心 西越中島駅新設工事)

Execution of Excavation Works based on the Field Monitoring

松崎 勝* Masaru Matsuzaki 細井 武** Takeshi Hosoi

高原 治美*** Osami Takahara

要 約

軟弱地盤での大規模な山留め掘削では,現場計測にもとづく計測安全管理が重要となる. 特に市街地においては,近接施工の観点から,山留め架構は強度設計から変形重視の設計 に移っており,施工に際しての計測管理でも,山留め壁の変形や背面地盤の変位の測定が より重要となっている.また,計測結果を迅速に処理し,次段階の施工に反映させるため に,自動計測システムの採用が増えている.本報告では,西越中島駅新設工事で採用した 山留め計測管理システムを紹介するとともに,計測で得られた山留め架構及び周辺地盤の 挙動に関する考察,解析結果との比較検討について述べる.

- 目 次
- §1. はじめに
- §2.概 要
- §3. 山留め計画及び設計
- §4. 計測計画及び管理
- §5. 生石灰杭による地盤改良効果及び山留め壁に 与える影響
- **§6.側圧測定値の評価**
- §7. 掘削時の挙動に関する考察
- §8. まとめ
- §9. おわりに

§1. はじめに

京葉都心線ルートは、日本鉄道建設公団が東京湾岸に 建設中のJR京葉線のうち、昭和63年末に部分開業され た新木場~蘇我間の湾岸ルートより、東京駅へ結ぶ約 7.4kmの路線である(Fig. 1).東京~新木場間は、5つ の新設駅(うち3つは地下鉄)と駅間の単線並列トンネ ル及び高架式軌道よりなり、平成2年3月(旅客化)の 開業である。当社はこのうち、江東区越中島2丁目にお いて西越中島地下駅の建設を担当した。

施工は、鋼管矢板山留め壁を用いた開削工法によった が、軟弱な地質に加えて、駅舎両側に東京商船大の建物、 施設が隣接するという厳しい施工条件であったため、現 場計測に基づく施工管理、安全管理を実施した、計測に よって得られた情報を正確かつ迅速に処理し、施工に反 映させる目的から、自動計測による管理システムを採用 した、本文は、この計測管理手法と山留め工の現場計測 結果について報告するものである。

Fig.1 京葉・都心線路線平面図

^{*}土木設計部係長

^{**}土木設計部課長 ***関東(支)西越中島(出)所長

§2. 概要

2-1 工事概要

工 事 件 名:京葉・都心・西越中島駅新設工事

- 企業
 先:日本鉄道建設公団

 工
 期:自

 昭和60年3月
 - 至 平成3年3月
- 開 削:幅19m×延長314m×深さ16~18m 平面図を Fig. 2 に示す.

		鋿	管	$\phi 800 t = 9 @ 1.20 m$
267	ft:	平面	延長	680 m
 獅	様	最大	:長さ	31.0 m
大板		最小	、長さ	25.0 m
兓	数	本	数	570本
	暈	重	星	3,440 t
掘	削	Т.	肁	97 , 200 m³
支	支 保		T.	4,230 t
推溜	コンクリ		— ŀ	18,500 m ³
「侢栄	鉄		筋	2,410 t

Table 1 主要工事数量

主要工事数量:Table 1 に示す。

2-2 地質概要

路線の位置する地域は、東京低地と呼ばれ、古東京川 の埋没谷上に位置しており、古荒川、古中川の三角州と して発展した沖積層が厚く堆積している.基盤面は、第 四紀の初期に形成された東京層、東京礫層と呼ばれる洪 積層で、その上部に埋没段丘礫層、埋没ローム層と呼ば れるやはり洪積世の土層がある.これら洪積世の上部に 分布する沖積世は、有楽町層と呼ばれ、海成の堆積物を 主体として縄文前期よりの海進時に形成されたものであ る.沖積層の上部には近年干拓地として人工造成された 埋土が分布している.

工事地点における各土層の性状は以下の通りである。 (1)埋土(T_s)

埋土は、付近の埋め立てに伴うもので層厚は約2.0m である.粘性土や礫、コンクリートガラ、木片等が混入 した粗砂よりなり、N値は1~3を示す.

(2)上部有楽町層(A_{c1}, A_{s1})

上部有楽町層は、砂混りシルト、細砂を主体とする層 で、色調は黒灰色を呈し若干の腐食臭を持つ。層厚は約 5.0mで、N値1~3の軟弱な土層である。

自然含水比 Wn (%)	40~65
液性限界 Wt (%)	35~55
塑性指数 Ip(%)	10~20
せん断強度Cu(tf/m²)	2.0+0.1Z

Table 2 有楽町下部層(Ac2)の土質特性

(Z(m)は地表面よりの深さを示す)

地質凡例

+

性土

ローム質土

質 土. Ds2

礫

記号

Тs

Acı

Ac₂

Dv

Ďg 2

土層区分

∧ ド □ Fc

粘性土

砂質土Asi

粘

粘 性 t Dc2

砂

砂

表

Fig.3 土質縦断図

下部有楽町層は、比較的均質なシルト層であり、所に より砂混りシルト層を挟む。色調は、暗灰色を呈しほぼ 全般に貝殻片を含む.層厚は約22~23mと厚く、N 値も 上部で0~2、下部で2~5と小さく、全体として軟弱 な土層である。土質特性を Table 2 に示す。

(4)埋没ローム層 (D_v)

凝灰質粘土を主体とした旧ローム層で、全体的に浮石 や有機物を混入する。N値は4~17とばらつきが大きい。

(5)埋没段丘礫層(Dg2)

一般的に粘性土 (D_{c2}) , 砂質土 (D_{s2}) , 砂礫 (D_{g2}) の 互層により構成されるが、この付近は砂礫層 (D_{g2}) が主 体となっている、N 値は50を越え、よく締まっている、

Fig.4 山留め断面図(一般部)

Fig.5 鋼管矢板仕様

土層上面は G.L.-33~-36m 付近に位置する. 工事区域の土質縦断図を Fig. 3 に示す.

§3. 山留め計画及び設計

3-1 山留め計画

山留めは, Fig. 4 に示すように切梁支保による鋼管矢 板土留工により実施された。補助工法としては軟弱なシ ルト層に対して,トラフィカビリティーの確保,山留め 壁の変形抑制,ヒービング防止を目的として,生石灰杭 による地盤改良を施した。

鋼管矢板の仕様を Fig. 5 に示す.

3-2 山留め壁の設計

山留め壁の設計は、基本的に企業先により行われている。計測結果に基づく設計手法に関する考察は後述する として、ここではその概要を述べる。

(1)設計土質定数

土質試験結果に基づいて決定された設計土質定数を Table 3 に示す、生石灰杭による地盤改良後の粘着力 (()内の値)は複合地盤の改良目標値である。 (2)設計側圧

山留め壁の設計側王は、旧日本国有鉄道東京第一工事 局(以下東一工と呼ぶ)の"仮設構造物設計要領"に示 される「切梁式土留壁に対する設計用側圧」が採用され ている.この設計用側王は、剛性の高い山留め壁を使用 した比較的深い掘削における現場実測値を統計的に整 理,解析して得られたものである(参考文献1参照).

粘性土についての背面側及び受動側の側圧計算の基本 仮定を Fig. 6 及び Table 4 に示す.

Table 3 設計土質定数

			•		
±	層	ł	単位体積 重 量 γ (t/m ^a)	内 部 摩 擦 角 <i>ϕ</i> (°)	粘着力 <i>Cu</i> (tf/m²)
埋 砂混じりシル	土 ~ト	(Ts) (Acı)	1.70	0	3.0
細	砂	(As1)	1.70	28	0
砂混じりシル 上 半	、ト	(Ac2)	1.70	0	3.0(6.0)
砂混じりシル 下 半	✓ト 部	(Ac2)	1.70	2	4.0(8.0)
凝灰質粘	±.	(Dv)	1.60	0	3.5
砂	礫	(DG2)	2.00	32	0

()内の値はケミコパイルによる地盤改良後の改良目標値

		基本 仮 定
背面	一次掘さく	[0≦Z≦D+2.0m] 掘さく面より2.0m下方の点(①点)において静止側圧から2c(cは粘着力度)を差し引いた側圧と仮想流体圧の大きな方の側圧とし、 土留め壁上端で0となる側圧とする。 [D+2.0m≤Z] ④点において上記の側圧とし、④点以深においては静止側圧 と同じ勾配で増加するものとする。
側 側 圧	二次掘さく以後	(0≤Z≤0.2D≤3.0m) 鉛直圧に等しい側圧とする. (0.2D≤Z≤D+2.0m) ④点において上記の側圧とし、④点においては静止側 圧から2c(cは粘着力度)を差し引いた側圧と仮想流体圧の大きな方の側圧と する。その中間は直線分布とする. (D+2.0m≤Z) ④点において上記の側圧とし、④点以深においては静止側圧 と同じ勾配で増加するものとする.
掘さく面側	受働側圧	【0≤Z≦2.0m】 ③点において、ランキンの受働側圧と、掘さく面で0となる 三角形の側圧とする。 【2.0m≤Z'】 ランキンの受働側圧とする.

Table 4 側圧係数の基本仮定(粘性土)

主動側圧係数は、次式で表現される.

 $K_{\rm A} = K_o - \frac{2 C}{\gamma (D+2.0)} \ge \frac{\gamma_w}{2 \gamma_t}$

静止側王係数は、粘性土に対して次の値が採用されている.

 $K_o = 0.75 \sim 0.82$ (全土圧)

3-3 計算方法

山留めの壁の応力,変形の計算は,東一工の設計要領 に従い,弾塑性法により行われている.弾塑性解析は, 粘性土において,解析値と実測値が比較的良い一致を示 す中村・中沢の方法によっている.

弾塑性法の概要を Table 5 に示す.

Fig.6 切ばり式山留め壁の側圧(粘性土)

§4. 計測計画及び管理

4-1 計測計画

計測計画に際しては、工事の安全管理,環境保全を第 ーに考え,施工管理上必要なデータを得ることを基本に、 第二の目的である研究,設計上の実証的データを得るこ とを考慮して,計測位置,計測項目及び計器の配置を決 定した.

Table 6 に山留架構と周辺に関する計測項目,使用計器の一覧表を Fig. 2 に主要計測位置を示す. (1)山留め架構に関する計測

鋼管矢板壁の計測位置は,Fig.2に示すように,掘削 深度の大きい駅舎両端の拡幅分(M₁, M₄, S₁, S₄)と 設計計算上重要な位置となってたる東京商船大体育館付 近(M₂, S₂)及び開削延長上 M₂-S₂断面とバランスの とれた位置(M₃, S₃)の8ケ所を選んだ.

このうち、 M_1 , M_2 , 及び M_3 の3ケ所に関しては、山 留め計算結果との実証が行えるように、壁体に作用する 土圧、水圧及び壁体の応力、変位の計測を行い、 M_4 は壁 体の応力、変位のみ、 $S_1 \sim S_4$ は、変位計測のみとした。

側圧測定の主対象土層が,比較的均質な沖積粘性土層 であることから,Fig.7に示すように,土圧計の鉛直配 置間隔を約@3.0m,水圧計を@6.0mとした.矢板応力 測定のためのひずみゲージの鉛直配置は,曲げモーメン トの形状をとらえられるピッチとし,最大曲げモーメン トの発生する壁下部については,@1.5mとし,壁上部に ついては,@3.0mとした.また,切梁反力による応力集 中が懸念される3段及び4段切梁位置においては,鋼管

提驾	译 者	中村・中沢(パシフィック コンサルタンツ)				
概念	X	構造モデル 構造モデル K1 mark K2 mark N1 - N2 - の 本 本 本 本 本 本 本 本 本 本 本 本 本				
構造チデル	壁体	根入れ有限長の完全弾性体 先端条件:固定,自由, ヒンジより選定				
	切ばり	設置後の切ばり支点はバネ支点				
+ 0	背面図	有効主働土圧(背面側の主働土圧から掘削面側の静止土圧を 差し引いた値)で、地層による変化を考慮できる。				
	掘削面側	壁の変化に一次比例した抵抗土圧で, 受働土圧値を超えない. 地層によって, 水平地盤反力係数を変化できる.				
	手 順	各掘削段階毎に計算する。この際の仮定条件として、 1)切ばり支点には、設置前の壁の先行変位を考慮する。				
計算手順	インプット デ ー タ	1) 切ばり設置位置 2) 各掘削深度 3) 施工順序 4) 壁の剛性 (ED 5) 静止土圧 6) 主働土圧 7) 受働土圧 8) 水平地盤反 力係数 9) 切ばりのバネ係数				
	アウトプッ ト デ ー タ	1)壁の水平変位 2)壁の応力(M.S) 3)切ばり軸力				

Table 5 山留めの弾塑性解析

								-				
	測定対象		測定位置	測定項目			使用計器		台数/測点数			
				$M_1 \sim M_3$	土庄	背面	面側日	:圧	差動トランス式 土 圧 計		37台	
						掘削	们側日	:圧			37台	
	ш				ж	背间	面側日	:圧	差	差動トランス式		13台
	留	鋼管矢板壁		庄	掘削	们側日	:圧	間隙水圧計		6台		
	80 1			$M_1 \sim M_4$	壁	体	応	力	ひ	ずみゲ	- ジ	124ヶ所
	架			$M_1 \sim M_4$ S 1 ~ S 4	壁体水平変位		ご位	挿	入式傾	斜計	8ヶ所	
	構	切梁, 火打ち		M1~M4	軸力		油	王式 荷	重計	6台		
							び	ずみゲ	ージ	38ヶ所		
					鋼	材	温	度	ひ	ずみゲ	- ジ	72ヶ所
	周 辺	地	盤	$M_1 \sim M_4$ S ₁ ~S ₄	地	表面到	沿直多	ぞ位	r	べ	n	72ヶ所
				1	変	鉛	直 変	位	r	ベ	n	28ヶ所
		構道	造 物		位	傾		斜	下	げ抜	5	-
					構	造り	勿変	状	ス	ケーク	い他	_

Table 6 計測項目と使用計器

断面の偏平度を測定する目的で、鋼管の外周に2軸直交 のクロスゲージを8ケ所取り付けた.変位測定は、挿入 式傾斜計によるものとし、連続的な変位分布を描けるよ

うに測定間隔を50cmとした。

切梁軸力の測定位置は、山留め壁計測位置との対応を 考慮して M₁, M₂, M₃及び M₄位置の壁前面とした. 使 用計器はひずみゲージ式ひずみ計を主体に、油圧型荷重 計を補助的に使用した.

(2)周辺に関する計測

周辺に関する計測は、地盤及び構造物のレベルによる 鉛直変位測定を主体とし、必要に応じて構造物の傾斜、 変状測定を行った。地表面鉛直変位の測定点は、山留壁 の変形との相関がとらえられるよう、M₁~M₄及び S₁ ~S₄に対応する壁背面に山留壁と直角方向の側線上に 設けた。周辺構造物に関しては、山留壁から2 D(D は 掘削深さ)を基準とした範囲内の商船大施設物に測点を 設け,鉛直変位を測定した.

(3計測システム

当現場では、山留め架構に関する測点が250点を越え るため、迅速性及び経済性を考慮して、自動計測化を図 っている。山留め架構に関する計測処理は挿入式傾斜計 による山留壁の変位測定と荷重計による切梁軸力測定を

除いて、全て自動計測処理を行っている。Fig.8に当現 場の計測システムを示す。

Fig.7 山留め壁計測計器配置図

システムには,現場で即座に図形化した形で計測結果 を出力できる機能を持たせた,出力形式は,

i) グラフィックディスプレー, ii) プリンター, iii) X-Y プロッターの3形式となっている. グラフィック ディスプレーは, 測定結果の分布図及び経時変化図を, X-Y プロッターはその図化を, プリンターは測定値, 計 算値のリストを出力する. Fig. 9 に出力例を示す.

計測頻度は,基本的に1日1回の全点計測とし,ディ スク内にデータを保存する。傾斜計による壁体変位の計 測は3日に1回,周辺に関する計測は週1回の計測頻度 とした.

4-2 計測管理

(1)管理基準

計測データの管理基準は,各計測項目ごとに2段階の 管理値を設定し,事前に各段階の対策を確立し,第2次 の管理基準値を越えることのないよう,Table7により 管理している.山留め壁,切梁及び火打ちの応力に対す る管理値は,材料の許容応力度とし,側圧については計 測圧を,変位については設計計算値を管理基準値として いる.

(2)安全管理

計測管理のフローを Fig.10 に示す.山留め架構に関 する日常安全管理は,計測結果の前回との比較,経時変 化などを出力させることにより,工事の進捗に伴う山留 め架構の状況把握を行い,計測結果を管理値と比較する

	測定項目	比較值(基準値)	第一次基準値	第二次基準值	備考
鋼	側 圧	設計側圧分布	100%		設計側圧分布と比較を行 い有意な変動を示した場 合には、その原因を考察 する。
安	曲げ応力	許容曲げ応力度	80%	100%	
板壁	変 形	設計計算值	100%		設計計算値と比較し、有 意な変動を示した場合に は、その原因を考察する とともに、周辺環境調査 結果等を含めて判断する。
1	切梁軸力	許容 圧縮力	80%	100%	
	村策基本方針		計測および施工管理体制 を強化する.また,次段 階以後の予測計算結果が, 第二次規準値を越える場 合,山留め架構の再検討 を行い,適切な予防処置 を講じるとともに,対策 を検討する.	関連工事を一時中断し前 段階で検討した適切な対 策処置を講じる.	

 Table 7
 管理測定基準

ことにより、工事の安全を確認する.また周辺地盤・構造物などへの影響については,毎週1回計測会議を行い, 現場状況・計測結果の検討,周辺への影響および安全性の確認を行っている.また,必要に応じて,実測値と予測値のフィッティングを行い,その結果をもとに,より 精度の高い予測計算により,次段階掘削の予測計算を行っている.予測検討により,管理値を越える場合は必要 に応じた対策を講じることにより,未然に事故防止を図っている.

なお、本工事では生石灰杭打設の影響により、掘削以 前に山留め壁に初期変位が生じたため、山留め壁につい ては、フィッティングや予測計算は、掘削の影響だけを とり出した相対値で行い、管理値との比較は絶対値で行 った。

Table 8 壁体変位量と地表面沈下量

ተልተ ግግ ይባሌ ይየድ	N	[2	S 2		
他上汉陌	$Dv(m^{s}/m)$	$Sv(m^3/m)$	$Dv(m^{3}/m)$	$Sv(m^3/m)$	
2 次 据 削時 ①→②	0.332	0.233	0.138	0.210	
3 次掘削時 ②→③	0.243	0.190	0.269	0.098	
4 次掘削時 ③→④	0.387	0.135	0.244	0.063	
5 次掘削時 ④→⑤	0.216	0.100	0.182	0.043	
最終掘削時 ⑤→⑦	0.213	0.348	0.192	0.200	
駅 舎 築 造 ⑦→Ē	0.145	0.492	0.072	0.310	
合 計 (<i>ΣDv</i> , <i>ΣSv</i>)	1.536	1.498	1.097	0.924	

Fig.10 計測管理フロー図

§5. 生石灰杭による地盤改良効果及び山留 め壁に与える影響

軟弱なシルト層 (A_{c2}) に対して、トラフィカビリティ ーの確保による施工能率の向上、掘削側地盤の受働抵抗 の増加による山留壁の変形抑制、ヒービングの防止等を 目的として、生石灰杭による地盤改良を施した. 杭径は 40cm、削孔長は24~27m、施工ピッチは1.4m×1.4m を 基本とし、GL-3.0m までの一次掘削後に施工を行っ た.

ここでは、この生石灰杭による改良効果とその施工時 に生じた山留め壁の変形について、試験結果及び計測結 果をもとに若干の考察を加える。

5-1 改良効果

調査試験は、原地盤と改良地盤を比較する目的で、シ ンウォールサンプルによる1軸圧縮試験、3軸圧縮試験 (UU), 圧密試験及び一連の物理試験を行った、サンプリ ングは、原地盤に関しては、根切り開始前に行い、改良 地盤に関しては、施工4週後、中間強度の得られる4本 の生石灰杭の対角線上、1/4点でおこなった。

Fig. 11は、原地盤と改良地盤の含水比の値及び1軸 圧縮強度 q_u の値を深度別に示したものである。これによ れば、含水比は約6~8%の低下を示している。また、 改良地盤の q_u の増加量は0.8~1.0kgf/cmの範囲内にあ

「Ig.12 干面及U核日地盈强反

り、深度に関係なくほぼ一様な増加を示している。

Fig. 12 は,改良地盤の3軸圧縮試験による非排水せん断強度 *C*_u (中間強度 *C*') とこれにより求まる複合地

盤強度 r'の値を深度別に示したものである. これによれ ば,改良地盤の C_u, 複合地盤強度 r'とともに計画時に設 定した値を上回っており,所定の改良効果が得られたこ とを示している. 図に示した複合地盤強度は次式により 求めた.

 $\tau' = (1 - a_s') \quad C' + a_s' \cdot \tau_p$ $\Box \Box \tau',$

 $a_{s}': 膨張後打設面積比=1.8a_{s}, a_{s} = \frac{\pi \phi^{2}/4}{S^{2}}$

S : 生石灰杭ピッチ

 τ_p : 生石灰杭自体のせん断強度(= 20tf/m^2)

C':改良後中間地盤せん断強度

5-2 山留め壁への影響

(1)生石灰杭施工時の山留め壁の挙動

生石灰杭の施工により、所定の地盤改良強度を得ることができたが、施工中に山留め壁が背面側に押し込まれるような、かなりの大きさの壁変形が生じた。M2位置における山留め壁の変形と背面側圧の実測値を Fig. 13に示す。同図から、背面側へ最大63mmの壁変形が生じ、浅い位置において約8.0tf/m,深い位置において14.0tf/mi前後の側圧増加があったことが判る。また、生石灰杭の施工順序と壁変形の関係を見ると、壁変形の過半は山

Fig.13 壁変形と側圧の実測値(M2)

留め壁に近接する施工時に発生していることが判る。打 設後は,壁体の変形,背面側圧とともに減少する傾向に あり,壁変形について言えば,中央付近で約2.0cmほど掘 削側に戻っている。

Fig. 14は、生石灰杭施工前後の背面側圧の経時変化 を示したもので、生石灰杭施工開始に伴って側圧の増加 が見られ、山留め壁近傍の打設時に急激な側圧増を示し ている。打設完了後4~5日で増加量の5割ほどが減少 し、その後は比較的ゆるやかな勾配で打設前の側圧値に 戻るような変化傾向を示す。これら計測結果から、生石 灰杭の施工状況と山留め壁が受ける影響についてまとめ ると次のようになる。

①山留め壁から離れた施工時には,壁全体に比較的ゆ るやかな応力と変形が生じる.

②壁に近傍する施工時には、山留め壁に顕著な影響が あり、側圧、変形とも最大値を示す.

③打設完了後,比較的短い時間(4~5日)で側圧が

Fig.14 生石灰杭施工時の側圧変化(M2背面側)

Fig.15 生石灰杭打設に伴う間隙水圧測定事例

その増加量の5割ほど減少する。壁変形もこれに対応して掘削側へ戻る。

④その後、側圧は比較的ゆるやかな勾配で打設前の側 圧値に戻る変化傾向を示すが、壁変形はほぼ一定値 で残留する.

上述したように、生石灰杭の施工により、掘削以前に 山留め壁に初期変位が生じたため、その後の根切りに伴 う影響の評価は、相対変位で行う必要が生じたが、管理 値との比較は絶対値で行った。

(2)影響要因と対策

生石灰杭施工時の山留め壁に与える影響要因として, 打設時の地盤体積の増加,杭材料投入時の圧気,消化反 応による杭体の膨張などが考えられる.通常,生石灰杭 の打設は,ケーシングを所定の深さに強制貫入させて杭 材料を投入するので,粘土やシルト質地盤のように,非 圧縮性の地盤においては,杭体積分だけ地盤体積が増加 する.この体積増による周辺地盤への影響は,一般的に は,ケーシングの貫入が浅い時点では、土の上向きの動 き (ヒーブ)が大きく,深くなると土被り圧による拘束 効果が生じ,側方への移動が大きくなる.また,この拘 束により,一時的に周辺地盤の間隙水圧が上昇する.

この地盤の側方移動,間隙水圧の上昇が山留壁を背面 側へ押す力となる.

一方,地中に投入された生石灰には、即時に吸水膨張 作用が始まる.この過程は生石灰の消化に消費される水 量と消化に伴う膨張量が体積的にほぼ1対1であるた め,Fig.15に示す生石灰杭打設後の間隙水圧測定例(参 考文献3)に見られるように、過剰間隙水圧は、初期の ケーシング貫入によるピーク値を越えることなく、徐々 に消散していく過程となっている.従って、打設後は杭 体の影響によって地盤体積が増加することはない.また、 この掘削側地盤に生じた過剰間隙水圧の消散により、 Fig.14に示すような背面側側圧の減少が生じるものと 考えられる.

以上の考察から、生石灰杭施工時の山留め壁に与える 影響は、主として杭打設による体積増加に起因するもの であり、打設終了後の杭体の膨張には影響されないもの と考えられ、上述の実測結果もそれを裏付けている。

従って,背面地盤中に近接して重要構造物がある場合 のように,影響を軽減する必要がある時には,所定の改 良効果を滅殺せずに,打設時の体積増加をできるだけ小 さくするという,相反した条件を同時に満足させる必要 がある.具体的な対策としては,山留め壁との打設距離 を大きくとる方法やアースオーガー等により打設時に原 地盤を排土する方法などが考えられるが,前者において は肝心の壁近傍地山において所定の改良強度が得られな い恐れがあり、後者においては打込み式に比べて改良効 果が落ちるとの報告(参考文献5)もある。従って、こ れらの対策の適用にあたっては、杭配置、施工順序等、 事前に十分検討する必要がある。

§6. 側圧測定値の評価

6-1 掘削前の側圧

M₁, M₂, 及び M₃地点における, 掘削直前の側圧測定 値を Fig. 16 に示す. 掘削前の壁に作用する側圧は, 鋼 管矢板圧入時の周辺土の乱れ等の影響によって, 自然地 盤の静止側圧と異なることも考えられるが, 壁の変位が 零の時の側圧であるので, 一応, 静止側圧を示している ものと考えられる. 測定値にばらつきはあるものの, 土 質がほぼ一様であることから, 側圧分布は典型的な三角

形分布を示している. 図中実線は, 側王 P_o を深さ Z の一 次関数, すなわち $P_o = a \cdot Z + b$ として係数 a, $b \in$ 最小 自乗法により求めた側王の代表線である. 全土圧による 静止土圧係数は, シルト層の平均湿潤単位重量を $\gamma_t =$ 1.70t/m³とすると $K_o = 0.60 - 0.70$ に対応している. こ の静止土圧係数の値は, 既往提案された掘削前の側圧係 数と塑性指数 I_p との関係式(次式参照)と比較的良い相 関を示す.

Ko=0.0045Ip+0.5 (参考文献6参照)

Fig.17は全応力比としての静止土圧係数 $K_o e$ $K_o = P_o / \gamma_t Z$ で定義し,既往の試験結果及び本現場の実

測値から求めた K_o値を塑性指数に対してプロットした ものである.これらの K_o値は,上式で表される塑性指数 と側圧係数の関係式を統計処理した時の95%信頼区間 にほぼおさまっており,同様の土質に対しては,塑性指 数から求まる全応力比としての K_o値は,設計側圧の大 きさを事前予測する方法として比較的高い信頼性がある. ものと考えられる.

一方、前述したように東一工の設計要領においては、 静止側圧係数を $K_o=0.75\sim0.82$ としており、若干大き めの値となっているが、これは、土の単位体積重量を $\gamma_t=1.50\sim1.55t/m$ と仮定していることと、比較的大き な側圧を示した実測例も含めて統計処理しているためと 考えられる。

- 6-2 掘削中及び掘削後の側圧
- (1)掘削に伴う背面側側圧の変化

掘削に伴う背面側の側圧(全土圧)の変化を Fig. 18 に示す. この図から以下の事柄がわかる.

- ①掘削の進行に伴って、背面側側圧は減少する傾向に ある.
- ②壁の変位量の大きい床付け付近において側王の減少 量が大きい.
- ③壁の上部では、掘削前の側圧より大きな値が測定さ れている.

これらの側王の挙動は次のように説明できる. すなわ ち、マクロ的に見れば、掘削に伴って壁が掘削面側へ変 位することによって背面側側王は減少する. この現象を 模式的に示したものが Fig. 19である. 擁壁のように剛 性が著しく高く、壁の変形モードが単純なものにおいて は、Fig. 19のような模式図だけで側王(P)と壁の変 位(の)の関係が説明できる. しかし、連続地中壁、鋼管 矢板壁も含め山留め壁においては、剛性がそれほど大き

Fig.19 背面側側圧の変化模式図

Fig.20 アーチ作用(切梁を用いる山留め壁の変位と土圧)

くないこと,また掘削と共に切梁が架設されることなど によって複雑なモードを示す.従って Fig. 19 に示した P~る関係に加えて,次のような現象の影響があるもの と考えられる.

a) アーチング作用

Fig. 20 に示すように、地盤中に土のアーチが形成されると、壁の変位量の大きい所での側王の減少量が大きくなり、逆に変位量の小さい所では側王が増加する。上記③の現象は、このアーチング作用の影響によるものと考えられる。

b)壁面のせん断力

壁の変形に伴って背面地盤が沈下しようとすると,壁 面摩擦により地盤は上向きのせん断力を受け,地盤内の 鉛直圧力(ov)が減少し,結果的に側圧Pも減少するも のと考えられる(Fig. 21 参照).

以上は,側圧の変化に対する定性的な評価であるが,各 掘削段階の山留め壁の変形と側圧の変化量との関係につ

Fig.23 M3計測点側圧測定值

105

いては,データが十分でないこと及び生石灰杭施工の影響との分離が難しいこともあり,定量的に評価するまで には到らなかった.

(2)設計用側圧との比較

山留め壁の設計用側圧は,前述したように,東一工の設 計要領に従い算定されているが,この設計要領に示され る設計用側圧は,実測データをもとに掘削に従う側圧の 変化をパターン化し,土質定数と関連づけて整理,簡略化 して得られたものである.本事例の側圧の実測値と設計 値の比較を Fig. 22,23 に示す.共通した傾向として, 掘削底付近の背面側圧が若干設計値より小さいが,全体 的には比較的良い一致を示している.東一工の設計用側 圧は本事例に関しては妥当であったと言うことができ る.

§7. 掘削時の挙動に関する考察

7-1 山留め壁の変位と応力

M₂, M₃, S₂及び S₃計測位置における生石灰杭施工後及 び最終掘削時の壁体変位の実測値を Fig. 24 に示す. 生 石灰杭施工後の壁体変位は, 杭打設後4週以上経た時点 のもので,ほぼ一定値で残留している状態にある.最終掘 削時の壁体変形形状は計測位置により違いを示すが, 生 石灰杭施工後の実測値を初期値として求めた相対変位図 (Fig. 25 参照) においては, ほぼ一様の変形形状を示し

Fig.24 掘削前, 掘削後壁体変位図

Fig.25 山留め壁相対変位図

ている. Fig. 25 に示す変位が一応掘削による山留め壁 の変位と考えられる. 図に示すように, 実測変位は, 当初 の弾塑性解析による計算値より最大変位で 5~15mmほど 大きな値となっている. これに対しては以下のような理 由が考えられる.

①生石灰杭打設による壁体の背面変位が長期に渡って 掘削側へ戻る現象があり、掘削のみによる影響と分 離されずに正しい相対変位が得られていない。

②粘性土層の除荷(掘削)に伴う強度低下

粘性土では、荷重の除荷によって、吸水・膨張のた め時間の経過と共に強度低下がおこる。強度低下ま での時間は、圧密による強度増加までの時間に比べ はるかに短い。

③掘削地盤面の重機による撹乱

④施工上の問題

施工上の制約から, 掘削時, 切梁架設まで長い期間 (2~3週間)を要する部分があり, これが掘削面の 強度低下の要因となった可能性がある.

以上のうち①については、M₃地点で、生石灰杭施工か ら次段階の掘削まで約3ヶ月の放置期間があり、後半の 2ヶ月間,残留変位がほとんど変化しないことから、この 現象は生じていないものと判断された。

そこで、②~④の掘削側地盤の強度低下に着目し、これ を Fig. 26 に示すような受働土圧の低減として評価し、 再解析を行った。但し最終掘削時は床付け後直ちに均し コンクリートが打設されているため、この低減は行って いない。

再解析の結果を, Fig. 25 に示すが, 実測最大変形と良い一致を示しており, 掘削地面から0~2 m 程度の深度 で強度低下があったことが推察される.

Fig. 27 は、最終掘削時の曲げモーメント分布図であ

Fig.26 粘性土の受働土圧

るが、実測値は、当初の解析値と比較的良く一致してい る. 従って当初の解析値は管理値としては妥当であった と言うことができる.しかしながら、生石灰杭施工後、山 留め壁には床付け面付近に20tf・m 程度の負の曲げモー メントが残留しており、このために掘削後の正の曲げモ ーメントが小さく実測されていることに留意する必要が ある. 掘削のみの影響による最大曲げモーメントは、従っ て、実測値より20tf・m ほど大きく、75tf・m 程度になる と考えられるが、これは、前述の再解析による最大曲げモ ーメントと一致しており、応力の面からも再解析の妥当 性が検照される.

また、図に示すように歪計より求まった曲げ応力と傾 斜計のデータより算出した曲げ応力は比較的良く一致し ており、鋼管矢板のように剛性の変化の少ない山留め壁 の計測管理を行う場合には、傾斜計による変位計測によ って十分応力照査が可能であることが示唆される.

7-2 背面地盤の挙動

M₂, 及び S₂断面の山留め壁の水平変位と背面地表沈 下曲線を Fig. 28, Fig. 29 に示す。先に述べたように, 山留め壁は生石灰杭施工時にケーシング圧入の影響で,

Fig.27 最終掘削時曲げモーメント分布図

施工	段 階	変位測定日	沈下測定日
生石灰杭完	∫GL-3.0 ①	28/-3/87	26 3 87
2次掘削	GL-4.0 2	30/ 4/87	30 4 87
3次掘削	GL-7.0 ③	13/-6/87	12 6 87
4 次掘削	GL-10.0④	10/-7/87	9.1.7.187
5次掘削	GL-13.23	3/ 8/87	30/-7/87
6次掘削	GL-16.06	27/ 7/87	24/-9/87
床付け	GL-17.0⑦	8/10/87	8/10/87
底床打設	8	17/11/87	19/11/87
最終計測	Ē	19/ 9/88	22/ 9/88

施工	段階	変位測定日	沈下測定日
生石灰杭完了	GL-3.0 ①	19/-3/87	19/-3/87
2 次掘削	GL-4.0 2	4/ 5/87	7/ 5/87
3 次掘削	GL-7.0 ③	13/ 6/87	12/ 6/87
4 次掘削	GL-10.0④	10/ 7/87	9/ 7/87
5次掘削	GL-13.23	3/ 8/87	6/ 8/87
6次掘削	GL-16.06	24/-9/87	24/ 9/87
床付け	GL-17.0⑦	8/10/87	8/10/87
最終掘削	Ð	19/-9/88	22/ 9/88

Fig.29 僅体変位及び背面地盤の沈下

背面側へ大きく変位している.この変位に伴い地表面に 最大4mm程度の隆起が生じた.背面側地盤は受働状態に あるため、山留め壁変位の影響はかなり遠方にまで及ん でいるものと考えられる.しかしながら、地中変位の測定 を行っていないこと、地表面の微小な隆起を精度良く測 定できていない等の理由から、地中を含めた影響範囲の 特定はできなかった.

掘削の影響による地表面沈下をみると,影響距離*L*は 山留め壁の全長*H*の1.2~1.5倍 (*L*= (1.2~1.5) *H*) で あること,最大沈下は山留め壁より5~10mの範囲に生 じていることがわかる.

地表面沈下の原因は、一般的に粘性土地盤においては、 山留め壁の変形に伴う背面地盤の変形と背面側の地下水 位低下に伴う圧密沈下である。当工事においては、山留め 壁として比較的止水性の高い鋼管矢板壁を使用している ため、背面側に顕著な地下水位の低下は見られなかった。 108 また、矢板壁に取り付けた間げき水圧計の実測結果においても、掘削時に山留め壁の変形に伴って若干の低下を示したが、掘削終了後は初期値に戻っている。従って、当 工事においては、地表面沈下の大部分が山留め壁の変形 に起因するものと考えられる。

この観点から Table 8 を作成したが、これより山留め 壁の変形量と背面側地表面の沈下量は、ほぼ等しいこと がわかる.表において、 ΣS_v が ΣS_o より若干小さい原因は、 生石灰杭施工の影響による地盤変状が広範囲に及び、こ れが測定結果に反映されていないことが原因と考えられ る、

§8.まとめ

西越中島駅開削工事の計測管理,計測結果から明らか になった事項及び今後の課題は次のとうりである。 ① 自動計測システム

計測システムを電気式で統一し、計測室で集中管理す ることにより、短時間で必要な測定ができ、省力化の面 でメリットがあった.また、計測結果をプロッターにて 図化することにより、結果の評価、管理値との比較が容 易となった.データの保存もディスクの使用により非 常にコンパクトとなった.

今後の課題としては、手動計測により行われている挿 入式傾斜計による測定を自動化し、いっそうの省力化 及び精度の向上を図ることにある.

計測器

計測器は機能面で優れる差動トランス型を中心に選定 を行ったが, 土圧計, 水圧計に明らかに異常と思われる 測定値を示すものがあった. これは, 設置不良が原因と 考えられるが, 設置の善し悪しが大きく測定精度に影 響する計器については, 設置に際して細心の注意を払 う必要がある. また, 計測器固有の特性, 初期変動等を 良く把握し, 必要に応じてデータの補正を行う必要が ある.

- ③ 生石灰杭施工の影響 山留め壁及び背面地盤へ生石灰杭施工の影響が及んだ 場合, 掘削時の計測管理, 挙動解析において, 生石灰杭 施工の影響と掘削の影響との分離が難しくなる. 生石灰杭施工による影響を軽減する対策をとるか, 生 石灰杭施工の影響による変動が十分落ち着くまで掘削 開始を待つ必要がある.
- ④ 計測結果及び挙動解析
 - a) 掘削前の壁に作用する側圧は, 既往提案の塑性指数 との関連式より求まる側圧と良く一致した.
 - b) 掘削後の側圧は, 掘削に伴う土圧の再分配を考慮し て決められた東一工の設計側圧と良い一致を示し た.
 - c) 掘削に伴う山留め壁の水平変位は, 当初の予測値を 若干上回ったが, 掘削側の粘性土のせん断強度の低 下を考慮した再解析値と実測値は良い一致を示し た.
 - d)背面地盤の沈下量と山留め壁の水平変位量は,ほぼ 1:1の関係にあった.

§9. おわりに

困難が予想された軟弱地盤における大規模な開削工事 も,事前の入念な設計,施工検討と自動測定システムによ る計測安全管理により,周辺構造物に悪影響を与えるこ となく,無事完了することができた. 今後は、当工事により得られた計測結果及び知見をその他の工事に反映させ、地下工事の問題解決を図ってい きたい.

最後に、本工事に際し御指導いただいた関係各位に感 謝する次第であります.

参考文献

- 1)東京第一工事局(旧国鉄)編:掘削土留め工の設計に
 関する検討報告書, I編, 仮土留め工, 1981
- 2) 夏川:計測計画と計測,基礎工,vol. 17, Na12, pp.35~40, 1989
- 3)下田他:生石灰杭安定処理工法,鹿島出版会, PP.12~19,1984
- 4)保井,窪田他:生石灰杭の施工による山留め壁への 影響,第20回 土質 工学研究発表会講演集, PP.1257~1260,1985
- 5) 土質工学会編: 掘削にともなう公害とその対策, 土 質基礎工学ライブラリー8, PP.292~297, 1973
- 6) 窪田他:粘性土地盤での設計側圧の予測方法について,第19回土質工学研究発表会講演集, PP.1089~1092,1984