熱流体解析プログラムを使用した温熱環境及び 気流分布予測に関する基礎的研究

Basic Study on Prediction of Indoor Climate and Space Air Distribution using Thermal Fluid Analysis Program

> 田中 勉* 萩谷 宏三** Tsutomu Tanaka Kozo Hagiya

要 約

質の高級化志向は建築空間へも波及し、それは快適空間の創造という形で具体化しつつ ある。

本論では,屋内空間の温熱環境および気流分布の最適化の手段として,市販の熱流体解 析プログラムを使用し,その実用性の確認をした.

解析対象モデルには、某植物工場の1/20模型を使用し、定量的(温度分布)および定性的(可視化による気流パターン)に、計算値と実測値を比較検討した。

その結果,定量性を究明する場合には,ある一つのケースについて実験をし,計算値と 実測値とのずれ(一定値)を補正することにより,その後の数値解析的展開が有効性を増 すことを確認した.また定性的評価手段だけに計算値を利用するならば,模型実験をして 補正することなく実用性が保証されることも見出した.

- 目 次
- §1. はじめに
- §2. 熱流体解析プログラムの概要
- §3. 解析モデルおよび解析条件
- §4. 数値解析結果と実測値との比較検討
- §5. おわりに

§1. はじめに

今日,建築物の空気調和設備の企画・設計段階におい て、室内全体の空気環境(気流・温度分布)を解析・予 測し、より良い快適空間を創造することが切望されてい る. その理由の一つに、大空間を取り入れた建築物の増 加に伴い、大空間ゆえの快適空気環境創造の難しさがあ

げられる.

現在,具体的な予測手段としては,模型実験と数値解 析がある.前者には,これまでに数多くの予測事例や実 測との比較による妥当性の確認があるが,相似則や実験 費用上の問題をかかえている.一方後者は,解析対象モ デルの形や条件の変化への対応の容易性に加え,半導体 の飛躍的な発展に伴うコンピュータの演算能力の高速化 により,より高精度で信頼性のある解析が可能となった. そこで本論では,市販の熱流体解析プログラムを用い 得られた数値解析解を,その解析モデルと同一の模型に よる実験結果と比較し,市販プログラムの実用性の確認 を目的とした.

§2. 熱流体解析プログラムの概要

2-1 基礎方程式

本論で使用した熱流体解析プログラムは、(株構造計画

^{*}技術研究所機電課 **技術研究所機電課係長

研究所が昭和58年に販売を開始し、その後数回にわたる バージョンアップを重ねた「HOTFLOW II」である。 流れには層流と呼ばれる穏やかで規則正しい流れと、

Fig.1 計算フロー

乱流と呼ばれる乱雑で不規則な流れとがあるが,建築工 学的に扱う流れは全て乱流といっても過言ではない.

「HOTFLOW II」では、乱流(場)を数値シミュ レーションする手段として、①パスキルギフォード・モ デル(0方程式輸送モデル)、②K- ϵ モデル(2方程式 輸送モデル)および③Smagorinskyモデル(LESモデ ル)の3解法が可能である。その中から本論では、次に 示すK- ϵ モデルを基礎方程式として採用し、非定常計 算を試みた。その計算フローをFig.1に示す。

(i)連続方程式

$$\frac{\partial u_i}{\partial x_i} = 0$$

(ii)運動方程式

$$\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial \bar{u}_i \bar{u}_j}{\partial x_j} = \frac{\partial \bar{P}}{\partial x_i} + \frac{\partial}{\partial x_j} \{\nu_t + \nu\} \quad (\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i})\} - g_i \beta \Delta \bar{T}$$

ただし、
$$\bar{P}=\bar{P}+2 \ k / 3 \ (m^2/sec^2)$$

 $v_t=C_{\mu} \ k^2/\epsilon \ (m^2/sec)$
ここで、 k は乱流エネルギー、 ϵ は散逸率、 C_{μ} は定
数である。

また、 u_i , P, T を時間平均量 \bar{u}_i , \bar{P} , \bar{T} と変動 量 u_i ', P', T'に分け,次式の形に分解する. $u = \bar{u} + u$ '

$$u_i - u_i + u_i$$
$$P = \bar{P} + P'$$
$$T = \bar{T} + T'$$

(iii) 乱流エネルギー式

$$\frac{\partial k}{\partial t} + \frac{\partial \bar{u}_i k}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\nu_q \frac{\partial k}{x_j} \right) + \nu_t S - \epsilon$$
$$+ g_i \beta \nu_{\theta} \left(\frac{\partial \bar{T}}{\partial z} \right)$$

ただし、
$$\nu_q = \nu_t / \sigma_q$$
 (σ_q は定数)
 $\nu_\theta = \nu_t / \sigma_\theta$ (σ_θ は定数)

$$S = \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i}\right) \frac{\partial \bar{u}_i}{\partial x_j}$$

(iv) 消散エネルギー式

$$\frac{\partial \varepsilon}{\partial t} + \frac{\partial \bar{u}_j \varepsilon}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\nu_{\varepsilon} \quad \frac{\partial \varepsilon}{\partial x_j} \right) + C_1 \nu_t \frac{\varepsilon}{k} S - C_2 \frac{k\varepsilon}{\nu t} + C_3 g_i \beta k \quad \left(\frac{\partial \bar{T}}{\partial z}\right)$$

ただし、
$$v_{\epsilon} = v_{t} / \sigma_{\epsilon}$$
 (σ_{ϵ} は定数)
C₁~C₃は定数

(v) 温度拡散式

$$\frac{\partial \bar{T}}{\partial t} + \frac{\partial u_j \bar{T}}{\partial x_j} = \frac{\partial}{\partial x_j} \left\{ \left(\nu_{\theta} + \mathbf{a} \right) \; \frac{\partial \mathbf{T}}{\partial x_j} \right\}$$

ただし、
$$\nu_{\theta} = \mu/\sigma_{\theta}$$
 (σ_{θ} は定数でプラントル数)
a:温度拡散率 (m²/sec)

なお,記号の意味は次のとおりである.

- x_i :位置ベクトル
- u_i :速度ベクトル
- P:密度当りの圧力
- ν :動粘性係数
- β : 体積膨張率
- g_i :重力加速度
- T:温度

2-2 離散化の方法

「HOTFLOW II」で扱える運動方程式の離散化の 方法を Table 1 に示す.

流体の運動方程式は、①強い非線形性を持っているこ と、②連続の式と同時に解かねばならないこと、などの 制約から、陽解法による離散化が最も一般的に行われて

解	法	対流項の差分化スキーム	基礎となる計算手法
陽解	法	風上差分法	SMAC法
		風上差分法	SIMPLE注
半陰角	军法	斜め風上差分法	SUDS法
		2次の重みつき風上差分法	QUICK法

Table 1 運動方程式の離散化方法

きた.しかしながら,運動方程式を陽解法で計算してい く場合,計算のタイムステップがある安定性条件(クー ラン条件,拡散数条件)を満足しなければならず,タイ ムステップを大きくとることができない場合がある.

これに対し陰解法、半陰解法により離散化を行うと、 安定性の条件からくるタイムステップの制限は緩和さ れ、陽解法よりタイムステップを大きくとることが可能 となる. そのため、問題によっては陽解法よりも全体の 計算時間を小さくできる場合もある.

「HOTFLOW II」では、運動方程式については、 陽解法 (SMAC法) と3つの半陰解法 (SIMPLE法、 SUDS法、QUICK法),各輸送方程式(湿度、濃度、乱 流エネルギー、消散エネルギー) については陽解法と陰 解法の3手段を任意に選択できるようになっているた め、問題に応じた最適の計算が行える。

Table 2に「HOTFLOW II」で扱える運動方程式 の陽解法 (SMAC法ベース)と半陰解法 (SIMPLE法 ベース)の比較を示す。

なお本論では、運動方程式と温度拡散式の離散化方法 として、コントロールボリューム法に基づく半陰解法 (SIMPLE法)と陰解法を採用した。

§3. 解析モデル及び解析条件

3-1 模型装置の概要

(1) 模型

「HOTFLOW II」を使用して、気流および温熱環 境の予測を試みるために、Table 3 に示す仕様で模型を 製作した (Fig.2, Photo 1). この模型には、次に示す 2つの役割を持たせた。

実験ケース①

本論の主テーマである「HOTFLOW II」の実用 性確証試験用モデル

実験ケース②

某植物工場の屋内温熱環境を実験的に予測するための1/20模型

しかし、運動方程式を半陰解法で解析する場合でも、 タイムステップの制限を完全に免れることはできず、膨 大な計算時間になりかねない. 従って、フレキシビリテ ィーに富む実験ケース①の条件の一部(吹出しノズル径 および空気速度)を、実験ケース②と換気回数を同一に するという条件のもとに変更した(Table 4).

なお、実験ケース②に関する報告は他の機会に譲るが、 吹出し・吹込みを伴う室内気流であるため、アルキメデ ス数の一致を設計条件とした. さらに、レイノルズ数の 大小が気流および温熱環境に与える影響を解明するため に、レイノルズ数を10倍まで上げられるようにした.

また,外部からレーザー光を照射し,模型内部の気流 性状を可視化するために,その材料に透明アクリルを使 用した. 屋根は,育成台車や熱電対などの設置を容易に 行うために,取り外し可能とし,パッキンで気密性を維 持した.

解法	陽 解 法 (SMAC法ベース)	半陸解法 (SIMPLE法ベース)
運動方程式の離散化	テイラー展開による方法	コントロール・ボリューム法
運動方程式の計算方法	連続計算法	・SOR法 ・ADI法(三重対角法) ・ガウスザイデル反復法
連続の式の解法	压力同時緩和法	圧力同時緩和法
計算メモリ	小さなメモリで可能	大きなメモリが必要となる
1 サイクルの計算時間	小さい	連立方程式を解くため大きい
タイムステップ	小さい	大きい
必要な時間までの計算ステップ数	多い	少ない
計算精度	・1次精度の半陰解法よりよい ・評価は容易	 タイムステップを大きくする と精度は悪くなる。 評価が難しい。

Table 2 陽解法と半陰解法の比較(運動方程式)

Щ́ II	実	物	模	型 (1/20)
·寸	去 44.6m×10	n×4.45 m	2.23 m ×0.	5 m × 0.223 m
吹出しノズル	径 d5	Omm	φ	2.5mm
吹出空気速」	变 17 m /s ((∼50°C)	3.80 m/s~3	8.0m/s(~50℃)
欧出しノズル本	数 50;	ヵ所	5	0ヵ所
給 気 量(1本当り) 2.00m	۱³/min	1.12 ℓ /min	n∼11.2ℓ/min
給気量(50本	<) 100m	³∕min	56 l /mir	n∼560ℓ/min
排気口面利	遺 0.87×0.8	$7 = 0.757 \text{m}^2$	0.043×0.043	$B = 1.892 \times 10^{-3} \text{m}^2$
排出空気速り	变 1.14	m/s	0.164 m /	′s∼1.64m/s
排 気 量(1台当り) 52 m ³	/min	18.7 l /mi	in∼187ℓ/min
排気量(3台	r) 156m	∛min	56ℓ/min	1∼560ℓ/min
吹出しノズルにおけ。 レイノルズ数	³ 47,7	52.8	533.7	~5,337.1
$(\text{Re}\frac{U}{\nu})$	$(\frac{17\times50}{1.78})$	$\times 10^{-3}$ (× 10^{-3})	$(\frac{3.8 \times 2.5 \times 10^{-3}}{1.78 \times 10^{-5}}$	$\sim \frac{38.0 \times 2.5 \times 10^{-3}}{1.78 \times 10^{-5}})$
「吹出しノスルにおけ、 アルキメデス数	9.3×	10 ⁻⁵	9.3×10^{-1}	$5 \sim 9.3 \times 10^{-7}$
$(Ar - \frac{gB \theta L}{H^2})$	9.8×0.00366	$(15 \times 50 \times 10^{-3})$	9.8×0.00366	$5 \times 15 \times 2.5 \times 10^{-3}$
U"	1	74	9 8 × 0 0026	3.8^2
			~ 3.0 \ 0.0030	$\frac{38^2}{38^2}$

Table 3 実物と模型の仕様

Fig.2 模型のイメージ

Photo 1 模型の外観

合計50本の吹出しノズルにおいて、均一な吹出し風速 を得るために、模型下部にチャンバーを設け、各ノズル の吐出圧力の均一化を図った.また3個の排気口からの

排気量のバランスは、各排気管に取り付けた傾斜管マノ メータで管理した。なお給・排気量は、インバータによ るファンの回転数制御により、任意に設定することがで きる.

(2) 計測システム

屋内空気性状の実験的解析手法として、①熱電対によ る温度分布の測定(定量的解析)と②気流の可視化(定 性的解析)を試みた。

実験で使用した熱電対は、JIS C1602 (熱電対) に規 定されている T 熱電対である. これは、+脚に純銅線、-脚に銅とニッケル合金のコンスタンタン線を使用してい る.許容差は、±0.5℃または測定温度の±0.4%(0.4級) で、超高速データ集録装置(THS-1000、㈱東京測器研 究所) の許容差±0.15℃を考慮しても最大誤差± 0.65℃で屋内環境制御精度として満足できるものであ る. なお計測のフローを Fig.3、熱電対の設置状況を Photo 2 に示す.

気流の可視化には、出力4 Wの光源をもつアルゴン イオンレーザー可視化システム(LLS、理化精機工業株) を使用した.これは、ファイバースコープにレーザー光 を入射し、その先端部に取り付けたシリンドリカルレン ズから LLS(スリット光のように薄くかつ面的なひろが りを持つ光)を取出し、それを観察断面に照射し2次元 的に気流性状を把握するものである.ただし、レーザー 光照射による側方散乱光を目視により観察する手法なの で、トレーサーとして煙(オンジナオイル)や空気の物 性に限りなく近い微粉体を用いた.

3-2 解析モデルおよび解析条件

(1) 解析モデル

Fig.2 に示す模型を3分割し、その中央部(吹出しノ ズル14個、排気口1個含む)を解析の対象とした、計算 メッシュは21(X)×23(Y)×12(Z)=5,796である(Fig. 4).

(2) 解析条件

解析モデルにおける流動環境条件は、左右、天井およ び底面はすべりなし壁、そして手前と向側面はすべり壁 (対象条件)とした. 吹出しノズルや排気口からの空気速 度は、Table 4 に示した実験条件に合わせた.

熱的境界条件は、左右、天井および底面に対しては外 部温度と統括熱伝達率を与え、流体部の熱伝導をも考慮 して境界温度を決めている。外部温度は20℃とし、解析 モデル内温度の初期値もそれに合わせた。また手前と向 側面は、断熱壁条件とした。

なおタイムステップは、0.05秒である。

§4. 数値解析結果と実測値との比較検討

4-1 数值解析結果

数値解析により得られた、吹出しノズルと排気口を含

Photo 2 熱電対の設置状況

Table 4 実験条件

	Щ				Н		実験条件
吹	出	ι	,	ズ	ル	径	$\phi 13$ mm
吹	出	L	穻	気	速	度	l m∕sec
吹	出	L		気	温	度	40°C
排	出	<u>51</u>		ત્રં	速	度	$1.2\mathrm{m/sec}$
ո		気	5 月	i.	(5	0本)	400 ℓ /min
排		気	1. 1	t. B.	(3	;本)	400ℓ /min
吹出	しノン	ズルに	おけ	るレ	イノル	ズ数	730
吹出	しノフ	これに	おける	アル	キメデ	ス数	$7.0 imes 10^{-3}$

TIME = 1199.9952 CYCLE = 24000 SECTION = Y - 2

						7	///		//					$\overline{/}$
114	4	14	24	_		 +		 	 	 		22	4	22
			Т			Т								
	+		+		-	+		 	 	 			+	
		_	_	_		+-		 _		 		 	-+	
						Γ								
	1	-				 			 		-		-	

Fig.4 計算メッシュ $(21 \times 23 \times 12 = 5,796)$

む断面の気流(ベクトル表示)と温度(コンター表示) 分布を Fig.5 に示す.これは,気流および温度がほぼ定 常となった20分後の分布である.

この図から、気流に関して次のことが言える。 ①両端の吹出しノズルからの噴流は、周囲の空気を誘引 し、その後天井面に沿い上昇し排気口へ向かう。②排気 口を境に、向って右側では半時計回りの循環流が形成さ れている。③しかしその中心部では、図(紙面)に垂直 方向の速度成分はほとんどない。④また左側では、循環 流の形成は見られず左方向への一様流となっている。⑤

Fig.5 数値解析による空気性状(1) (吹出しノズルと排気口を含む断面)

床面(底面)では、排気口のある位置を境に、それぞれ 左右に床面に平行な気流を形成している。

また温度に関しては、吹出しノズル出口空気温度を 40℃,天井および床面近傍の温度を約23℃とし、その間 を9等分のコンター線で描いたものである。室中心部の 温度は、設計温度である25℃付近にある。なお温度分布 の計算値を Fig.6 に示す。

Fig.7は、吹出しノズルと排気口を含まない断面の気 流と温度分布を示したものである。同様にこの図から判 断する限り、次のことが言える。①断面の両端では、隣 TIME = 1199.9952 CYCLE = 24000 SECTION = $Y - 9 \rightarrow 0.184$ (M/SEC)

Fig.7 数値解析による空気性状2) (吹出しノズルと排気口を含まない断面)

接する吹出しノズルからの噴流の影響を強く受け, Fig. 5と同じく天井に沿う流れが発生している. ただしその 流速は, Fig.5 の約70%である. ②両端の天井面近傍に, 下降流が発生している. ③排気口のある位置を境に, 向 って右側では半時計回り, また左側では時計回りの循環 流が形成されているが, その流速は非常に小さい. ④床 面近傍の気流については, Fig.5と同じ傾向を示してい るが, その大きさも小さい.

また温度に関しては、両端の天井面近傍に最高温度 27.3℃,その下方床面近傍に最低温度21.7℃が分布し ており、その間を9等分のコンター線で描いたものであ

TEMPERATURE-T * TIME = 1199.99 *10**1 J = 9						9,9952	* CYCLE = 24000				(吹出しノズルと排気口を含まない断面)										
I =	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
K = 12	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.300	2.316	2.312	2.169	2.157	2.150	2.133	2.000	2.000	2.000	2.000	2.000	2.000	2.000
K = 11	2.000	2.000	2.000	2.000	2.398	2.366	2.362	2.300	2.316	2.312	2.315	2.281	2.150	2.133	2.237	2.303	2.383	2.000	2.000	2.000	2.000
K = 10	2.505	2.789	2.681	2.605	2.398	2,366	2.362	2.403	2,453	2.456	2.395	2.371	2.352	2.306	2.237	2.303	2.383	2.625	2.703	2.788	2.514
K = 9	2.505	2.789	2.681	2.605	2.598	2.588	2.576	2.570	2.557	2.525	2.469	2.480	2.516	2.550	2.574	2.597	2.615	2.625	2.703	2.788	2.514
K = 8	2.448	2.695	2.652	2,623	2.607	2.596	2.586	2.580	2.569	2.540	2.509	2.523	2.556	2.583	2.598	2.610	2.618	2.632	2.665	2.699	2.451
K = 7	2.398	2.669	2.590	2.567	2.565	2.566	2.563	2.554	2.547	2.535	2.520	2.533	2.559	2.578	2.584	2.579	2.570	2.569	2.604	2.665	2.398
K = 6	2.372	2.663	2.536	2.532	2.542	2.546	2.545	2.542	2.539	2.532	2.524	2.534	2.554	2.568	2.570	2.557	2.542	2.525	2.544	2.602	2.369
K = 5	2.365	2.614	2.513	2.518	2.527	2.533	2.536	2.535	2.533	2.529	2.524	2.531	2.547	2.556	2.552	2.538	2.522	2.507	2.498	2.541	2.350
K = 4	2.358	2.557	2.489	2.497	2.508	2.518	2.525	2.526	2.526	2.524	2.521	2,526	2.537	2.539	2.530	2.513	2.495	2.481	2.473	2.437	2.338
K = 3	2.332	2.456	2.427	2.441	2.460	2.480	2.495	2.505	2.507	2.509	2.509	. 21111	2.513	2.508	2.489	2.464	2.440	2.422	2.409	2.262	2.311
K = 2	2.244	2.280	2.267	2.290	2.324	2.366	2.405	2.441	2.450	2.460	2.469	2.470	2.457	2.426	2.380	2.333	2.290	2.262	2.249	2.262	2.224
K = 1	2.145	2.132	2.115	2.134	2.163	2.196	2,226	2,259	2,271	2.293	2.316	2.317	2.282	2.250	2.213	2.177	2.141	2.115	2.108	2.123	2.130

TEMPE	RATU	RE-T	*	TIME	=1199.	9952		*(YCLE	= 24000				(政	出しノ	ズルと	非気口を	含む断	riai)		
* 10 *	* 1	J =	12													• •	.,	11.000			
I =	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
K =12	2,000	2,000	2.000	2.000	2.000	2.000	2.000	2.490	2.511	2.447	2.170	2.167	2.256	2.242	2.000	2.000	2.000	2.000	2.000	2.000	2.000
K = 11	2.000	2.000	2.000	2.000	2.468	2.457	2.488	2.490	2.511	2.447	2.342	2.327	2.256	2.242	2.340	2.385	2.455	2.000	2.000	2.000	2.000
K = 10	2.657	3.251	2.827	2.674	2.468	2,457	2.488	2.512	2.538	2.513	2.486	2.471	2.456	2.420	2.340	2.385	2.455	2.704	2,866	3.233	2.654
K = 9	2,657	3.251	2,827	2.674	2.636	2.607	2.584	2.576	2.559	2.538	2.537	2.553	2.571	2.589	2.606	2.632	2.663	2.704	2.866	3.233	2.654
K = 8	2.521	3.403	2.774	2.642	2.606	2.587	2.573	2.564	2.556	2.551	2.559	2.577	2.591	2.602	2,609	2.618	2.630	2.661	2.818	3.387	2.511
K = 7	2.489	3.536	2.703	2.568	2.562	2.559	2.554	2.551	2.551	2.552	2.559	2.571	2.580	2.585	2.585	2.582	2.575	2.573	2.748	3.523	2.473
K = 6	2.494	3.676	2.649	2.541	2.541	2.543	2.544	2.544	2.545	2.546	2.550	2.559	2.566	2.568	2.564	2.555	2.544	2.534	2.683	3.668	2.478
K = 5	2.494	3.813	2.605	2.522	2.526	2.531	2.534	2.536	2.537	2.539	2.541	2.546	2.546	2.541	2.533	2.524	2.515	2.506	2.625	3.809	2.480
K = 4	2.480	3.903	2.555	2.499	2.507	2.514	2.520	2.525	2.526	2.527	2.529	2.529	2.522	2.514	2,504	2.493	2.484	2.476	2.563	3.901	2.466
K = 3	2.470	4.000	2.474	2.448	2.461	2.473	2.483	2.491	2.493	2.496	2.499	2.492	2.482	2.473	2.460	2.448	2.473	2.426	2.466	4.000	2.457
K = 2	2.287	2.916	2.293	2.302	2.330	2.357	2.380	2.398	2.403	2.410	2.417	2.404	2.386	2.368	2.346	2.322	2.299	2.278	2.286	2.901	2.276
K = 1	2.145	2.249	2.123	2.131	2.150	2.170	2.188	2,207	2.215	2.225	2.233	2.216	2.200	2.182	2.163	2.144	2.127	2.114	2.116	2,234	2.137

Fig.6 数値解析による温度分布の計算値

る. なお, 温度分布の計算値は Fig.6 に示すとおりであり, 室中心部の温度は設計温度の25.0℃付近にある.

4-2 実測値

(1) 温度の実測値

既述した市販プログラムの解析結果を定量的に評価す るために、「3-1模型装置の概要」で述べた方法により、 模型内の温度分布を実験的に求めた. 吹出しノズルと排 気口を含む断面の温度分布を, Fig.8 に示す. これは、 初期温度20℃の空間に40℃の温風を吹出し,約2時間後 の定常状態とみなせる時点のものである. 最高温度は 32.2℃で右側吹出しノズル上方に、また最低温度は 26.6℃で右下床面近傍に存在し、平均温度は約28.3℃ である. Fig.9 は、吹出しノズルと排気口を含まない断 面の温度分布である. 最高温度は28.5℃でその位置は Fig.8 にほぼ等しく、また最低温度は26.6℃で左下床面 近傍に存在し、平均温度は約27.6℃である。

(2) 気流の可視化

同様に,解析結果を定性的に評価するために,「**3**-1 **模型装置の概要**」で述べた方法により,模型内の気流パ ターンを実験的に求めた.なおトレーサーには,オンジ ナオイルを使用した.

Photo 3 は、吹出しノズルと排気口を含む断面の気流 パターンであり、これから次のことが言える。①両端の 吹出しノズルからの噴流は、周囲の空気を誘引し、その 後天井面に沿い上昇し排気口へ向かう。②排気口の位置 を境に、向かって右側では半時計回りの循環流が形成さ れている。③また、左側では逆に時計回りの循環流の形 成が見られる。

Photo 4 は、吹出しノズルと排気口を含まない断面の 気流パターンであり、同様にこれから次のことが言える.

29.9	28.5	28.3	28.6	28.3	27.3	28.5	29.0	28.8	31.2
(0.3) 30.1 (0.5)	(1.8) 28.0 (1.6)	(2.2) 28.3 (2.4)	(2.8) 28.3 (2.6)	(2.9) 27.9 (2.4)	(1.8) 28.5 (2.7)	(2.6) 28.7 (2.7)	(2.7) 28.7 (2.5)	(1.8) 28.8 (2.2)	(1.8) 31.8 (2.3)
28.2 (-1.9)	29.1 (3.4)	28.1 (2.5)	28.1 (2.6)	27.8 (2.3)	$ \begin{array}{c} 28.1 \\ (2.4) \end{array} $	28.3 (2.4)	28.3 (2.5)	28.5 (2.8)	32.2 (2.2)
30.2 (-0.7)	28.1 (2.7)	27.9 (2.5)	27.9 (2.5)	$ \begin{array}{c} 28.0 \\ (2.5) \end{array} $	27.9 (2.3)	28.1 (2.4)	27.9 (2.4)	27.7 (2.4)	30.4 (-0.4)
$ \begin{array}{c} 28.0 \\ (-3.9) \end{array} $	27.8 (2.8)	27.8 (2.7)	27.8 (2.5)	27.9 (2.4)	27.8 (2.5)	28.0 (3.1)	27.8 (2.9)	27.4 (2.6)	$27.8 \\ (-4.1)$
L	$\begin{bmatrix} 26.9\\ (4.6) \end{bmatrix}$	27.3 (3,7)	27.4 (5.0)	27.4 (3.3)	27.3 (3.3)	27.1 (3.4)	26.6 (3,4)	26.6 (3.8)	

():実測值-計算值 単位:℃

Fig.8 模型実験による温度の実測値(1) (吹出しノズルと排気口を含む断面)

28.1	28.0	27.8	27.4	27.3	26.7 (1.9)	26.8 (1.3)	27.9 (1.9)	28.5 (2.2)	28.5 (2.0)
(1.0) 27.6 (2.0)	(1.3) 27.9 (1.7)	28.0 (2.0)	27.9 (2.1)	27.6 (2.2)	26.6 (1.4)	27.0 (1.2)	28.0 (1.9)	28.4 (2.1)	27.7 (2.1)
27.5 (2.1)	27.6 (1.9)	27.8 (2.1)	27.7 (2.2)	27.5 (2.1)	26.8 (1.5)	27.1 (1.3)	27.9 (2.1)	(27.6 (2.2)
27.2	27.1 (1.8)	27.5 (2.0)	27.6 (2.2)	27.4 (2.1)	26.7 (1.4)	27.2 (1.5)	27.7 (2.1)	28.0 (2.7)	27.3 (2.2)
26.6 (2.0)	26.7 (1.7)	27.6 (2.4)	28.0 (2.7)	27.7 (2.5)	(-)	$ \begin{array}{c} 28.0 \\ (2.6) \end{array} $	28.2 (3.1)	$ \begin{array}{c} 28.4 \\ (3.6) \end{array} $	(3.6)
L	26.6 (3.7)	27.0 (3.3)	28.1 (3.7)	27.8 (3.2)	27.5 (2.8)	27.7 (3.4)	28.1 (4.8)	(5.6)	

():実測値-計算値 単位:℃

Fig.9 模型実験による温度の実測値(2) (吹出しノズルと排気口を含まない断面)

 Photo 3 気流の可視化(1)
 (吹出しノズルと排気口を含む断面)

①排気口のある位置を境に、向かって右側では半時計回り、また左側では時計回りの循環流が形成されている。 ②ただし左側の循環流は非常に不安定で、右側の循環流 に吸収されることが多く、発生と消滅を繰返している。

なおトレーサーの分散性が悪いのか,それとも気流そ のものが存在しないのか両写真に共通して床上付近の気 流の詳細な状態は把握できなかった.

4-3 数値解析結果と実測値の比較検討

(1) 定量的比較検討

Fig.8. 9の図中に併記した()内の数値は,実測値 から計算値を差引いたものである.この計算値は,実測 値に対応する計算格子点のものである.しかし両端部(左 右各5点)については,その対応性が完全にとれなかっ たので,隣接する2データの平均値とした.

吹出しノズルと排気口を含む断面の実測値と計算値の 差(Fig.8参照)についてみると、室中心部で約2.5℃、 両端部で-4.1~2.2℃そして床上で約3.8℃である。 流動条件および温度差の激しい両端部を除いて、その値 はほぼ一定値とみなすことができる。また吹出しノズル と排気口を含まない断面(Fig.9参照)においては、室 中心部および両端部で約2.0℃ 床上で約3.8℃とそれ ぞれほぼ一定値とみなすことができる。すなわち、流動 条件や温度差が比較的穏やかな場所では、両者の温度分 布は相似性を有し、計算値にある一定の値を考慮すれば、 定量的に一致する。

なお、床上の実測値が計算値に比べて高いのは、床下 に吹出し風量および温度を均一にするために設けたチャ ンバーの影響と考えている.

(2) 定性的比較検討

気流パターンで、基本的に計算と実測(可視化)で差 異が生じたのは、吹出しノズルと排気口を含む断面にお いてである.すなわち、その左断面において、計算では

Photo 4 気流の可視化(2) (吹出しノズルと排気口を含まない断面)

左壁へ向かう床面に対する平行流であるが、実測では時 計回りの循環流となっている.しかしその流速(計算値) は0.1m/sec以下であり、実際上平行流であるのか循環 流であるのか居住環境に与える影響としては少ないと考 えられる.また吹出しノズルと排気口を含む断面の可視 化において、図の左側の循環流が非常に不安定で右側の それに吸収されるが、流速が小さいので(0.1m/sec以 下)実用上無視できる.従って、両者は定性的にほぼ一 致すると判断できる.

§5.おわりに

市販の熱流体解析プログラムを用いて得られた数値解 析解を,その解析モデルと同一の模型を用いた実験結果 と比較検討してきた.その結果、本論で扱った条件にお いて得られた結果を以下に示す.

①計算値と実測値との定量的整合性について

流動条件や温度差が比較的穏やかな場所では、計算 値にある一定の値を加えることにより、実測値と一致 する.すなわち、温度分布に相似性が見られる.

②計算値と実測値との定性的整合性について

流速が無視し得るほど小さい (0.1m/sec) 場所以外 では、計算と実測 (可視化) は定性的によく一致する.

以上より、本論で使用した熱流体解析プログラム 「HOTFLOW II」は、定量性を追求する場合には一つ の解析条件に基づいた実験的補足が必要だが、定性的評 価だけを行う場合には問題ない。

最後に,数値解析に際し適切なアドバイスを頂いた㈱ 構造計画研究所 高嶋氏,また模型の製作に協力を頂いた 理化精機工業㈱ 浜氏に感謝の意を表する.

参考文献

- 1)流れの可視化学会編:流れの可視化ハンドブック, 朝倉書店, 1986
- 2) 日本機械学会編:流れの数値シミュレーション, コ ロナ社, 1989
- 3) 株構造計画研究所編: 3次元熱流動解析プログラム HOTFLOW II 利用者マニュアル, 1988
- 4)勝田・土屋:室内空気分布の模型実験法に関する研究第1・3報,空気調和・衛生工学会論文集, No.17, 1981年10月
- 5) 中原・後藤・宮川:室内空気分布に関する模型実験 と実測 その1,空気調和・衛生工学,第45巻第10号
- 6)村上・加藤・孔・中川:大架構建築内の温熱・空気 環境に関する研究,生産研究,UDC628.88:53.023
- 7)村上・加藤・須山:乱流数値シミュレーションの診断システムに関する研究(第2報),日本建築学会,1985
- 8)堤・浦野・西田:閉空間における3次元熱対流の数 値解析と可視化実験,日本建築学会,第368号,1986