東京湾の潮流解析

福本 正* 多田 彰秀** Tadashi Fukumoto Akihide Tada

1. はじめに

東京湾は、水域面積約12万 ha、平均水深15m の閉鎖性 海域である。その170 km¹⁾に及ぶ長い水際線には、東京を はじめ横浜、川崎、千葉などの大都市が位置している。 そのため東京湾の利用については、ますます高密度化の 度合を強める傾向にある。特に、沿岸域開発に関する数 多くのプロジェクトが提案され、埋立及び浚渫等か計画 されている。このような地形的変化が湾内の流れに及ぼ す影響、更には各種物質(ex.濁度、温度、COD etc.) の拡散特性を予測しておくことは、開発の遂行上及び環 境保全のうえで極めて重要なことである。

本論文では、上述のことを鑑み、研究の第一段階とし て2次元単層モデルによる東京湾の潮流解析を行った。 更に、得られた計算結果と現地観測記録との比較検討を 行い、本解析法の有効性について考察を加えたので報告 する。

2. 基礎方程式と計算条件

解析に用いた基礎方程式は、Navier-Stokesの方程 式を水深方向に積分した運動方程式(①,②)及び連続 式(③)より構成されている。また、これらの差分化に は、スタガード・スキーム²⁾を適用した。

$\frac{\partial M}{\partial t}$ +	$\frac{M}{h+\zeta}$	$\frac{\partial M}{\partial x}$ +	$\frac{N}{h+\zeta}$	$\frac{\partial M}{\partial y} + g$	$g (h+\zeta)$	<u>∂ξ</u> ∂x
$-\frac{\tau_s(z)}{\rho_u}$	$\frac{x)}{v} = -\frac{1}{v}$	$\frac{\tau_b(x)}{\rho_w}$	$-f_cN$ -	$\epsilon_h (\frac{\partial^2 M}{\partial x^2})$	$\frac{M}{2} + \frac{\partial^2 M}{\partial y^2}$	= 0 ①
$\frac{\partial N}{\partial t}$ +	$\frac{M}{h+\zeta}$	$\frac{\partial N}{\partial x}$	$+\frac{N}{h+\zeta}$	$\frac{\partial N}{\partial y}$	+g(h+ξ	$\frac{\partial \xi}{\partial y}$

^{*}技術研究所海洋技術課 **技術研究所海洋技術課係長

ここで、t:時間、g:重力加速度、h:水深、 ς :静水 面からの水位変動量、M、N:それぞれ x、y 方向の流 量フラックス、 f_c :コリオリカ、 ϵ_h :水平粘性係数、 τ_s (x)、 τ_s (y):それぞれ x、y 方向の海水面摩擦応力、 τ_b (x)、 τ_b (y):それぞれ x、y 方向の海底面摩擦応力とす る。

計算に際しては、計算メッシュ(Δs): 1 km, タイムス テップ(Δt): 15秒を用いた.また、湾口部での境界条 件については、東京湾の卓越分潮である主太陰半日周潮 (M2分潮)の周期と富津における観測潮位(M2+S 2)を用いて正弦波を与えた。更に、江戸川、荒川、隅 田川、鶴見川、多摩川から流入する河川流量も考慮にい れた.なお、ここで示す計算結果は、すべて計算開始よ り30周期目の値である。

3. 解析結果と現地観測記録³⁾⁴⁾との比較

Fig.2 (a) 及び (b) は, Fig.1 に示す P1 地点におけ る観測値と計算結果の潮流楕円を示したものである。長 軸, 短軸の方向については, 定性的によく一致している。

Fig.1 解析に用いた観測地点

11

 $(\rm cm/S)$

(a) 観測結果

Fig.3 P2地点における潮流楕円

(a) 観測結果

Fig.5 上げ潮最強時の流況

一方,その大きさに関しては,両者の間に相違が確認される.これは,解析上考慮できなかった密度流,吹送流, 及び日周潮成分等の影響によるものと考えられる.

Fig.3, 4は, それぞれ P2地点, P3地点における潮 流楕円の比較を行ったものである. これらについても P1地点と同様のことが確認される.

Fig.5 は、上げ潮最強時の流速ベクトルについて観測 値及び計算結果を示したものである。Fig.5 (a) より、 湾口部で大きな値を持つ流速ベクトルが、湾奥に向かう ほど小さくなっていく様子が読み取れる。このような定 性的な流況については、Fig.5 (b) の観測記録ともよい 一致を示している。

Fig.6は、本解析によって求められた潮汐残差流を示 したものである。湾奥部や湾央部における流況及び、湾 口部付近の水平循環流については、従来から報告されて いる流況を十分よく再現している。しかしながら、海底 地形の起伏が激しい(水深変化が大きい)海域について は、流速がかなり速い結果となっており、更に検討の必 要がある。

4. おわりに

各時刻における解析結果は、実際の流況をよく再現し

Fig.6 潮汐残差流(解析結果)

ていることが明らかとなった。一方,物質の拡散特性に 影響する潮汐残差流については、海底地形の起伏が激し い海域や浅水域では再現性がよくないことも確認され た。

今後は、3次元多層モデルを用いて解析を行い、今回 の結果と比較検討するとともに、単層モデルでは十分に 再現できない密度流,吹送流等の解析も行う予定である.

参考文献

- 1) 生垣吉計:東京湾の現況と将来計画,土木学会誌, 1981年11月号, pp.2~6.
- 2)福本 正:大村湾の潮流解析,長崎大学大学院工学 研究科修士課程修士論文1990,3.
- 3)森川雅行・村上和男:東京湾における長周期流れの 変動特性,運輸省港湾技術研究所,技研資料, No550, pp.1~50, 1986, 6.
- 4)東京湾潮流調査報告書(第1,2報),第2港湾建設 局横浜調査設計事務所,1966~67.