HHRC 構造に関する研究(その1) (高強度コンクリートと高強度鉄筋からなるはり部材の曲げせん断実験)

Experimental and Analytical Study on HHRC Structure (Part 1, Flexure - Shear Test of Beam with High Strength Concrete and Bars)

> 笠松 照親* 塩川 真** Teruchika Kasamatsu Shin Shiokawa

飯塚 信一** Shin-ichi Iizuka

要 約

高層鉄筋コンクリート造建物を設計する場合,高強度のコンクリートおよび鉄筋を利用 するのが有効であることは一般的に認められている.本研究では,既存の高層 RC 造で使用 されている強度のものよりも一段高いコンクリート (Fc=300~600kgf/cm² {29.4~58.8 MPa})と鉄筋 (SD40~SD70級)を用いて50階建ての高層鉄筋コンクリート造集合住宅の 開発の可能性について研究することを目的としている.

本報は、HHRC構造の概要, およびに本研究で用いる高強度コンクリート (Fc=400, 600kgf/cm {39.2, 58.8MPa}) ならびに高強度鉄筋 (SD70級) からなる, はり部材の曲げ せん断実験について報告したものである.

HHRC 構造の名称は <u>H</u>igh Strength Material & <u>H</u>igh Rise <u>RC</u> Structure の頭文字を とったものである.

- 目 次
- §1. はじめに
- §2. HHRC 構造の概要
- §3. はり部材の曲げせん断実験
- §4. まとめ
- §5. おわりに

§1. はじめに

我が国の主要都市では近年住宅地の地価が高騰し,そ のため土地を有効利用しようという理由から,都市部に 建つ集合住宅を高層化しようとする傾向にある。他方, 我が国の集合住宅には耐震性,遮音性など居住性に優れ た鉄筋コンクリート構造が利用される場合が多い。この ような社会的背景から, 本研究は50階建て高層 RC 造集 合住宅の開発を行うことを目的としている.

そこで本研究では、まず、高強度材料を用いた RC 部 材の力学的性状について実験的に研究することから始 め、次に実験から得られた部材の力学的履歴特性をもと に骨組の静的および動的弾塑性解析を行い、50階建て高 層 RC 造集合住宅の耐震性能と耐震設計について検討 する.

§2. HHRC 構造の概要

近年、高強度かつ高品質の材料を用いた新しい RC 造 建築物の開発が行われており、既存の高層 RC 造建物で 利用されているコンクリート強度は $Fc=210\sim480$ kgf/cm²(20.6~47.1MPa)で、主筋強度は SD40以下で ある.しかし、近年、SD40以上の鉄筋は勿論のこと、コ ンクリート強度も相当な高強度のものまで製造可能にな

^{*}技術研究所研究部原子力課長

^{**}技術研究所研究部原子力課

ってきた。このような高強度材料を高層 RC 造にどのよ うに利用していくべきかは今後の大きな課題である。そ こで、本研究では、これらの高強度材料を利用するひと つの試みとして、50階建ての高層 RC 造集合住宅への利 用の可能性について検討する。

(1) 使用材料

- ①コンクリート:コンクリートは普通コンクリート $(F_c = 300 \sim 600 \text{ kgf/cm}^2 \{29.4 \sim 58.8 \text{ MPa}\})$ とし、将 来は床スラブに軽量コンクリートの利用も考える。下 層階を Fc=600kgf/cm² {58.8MPa} とし、上層階に 従って強度を低下させる。ただし各階柱の長期軸応力 度は $\sigma_o = 0.3 Fc$ 以下に抑える.
- ②主 筋:下層階は SD70とし, 上層階では SD40, SD50を利用する。これは鉄筋継手、付着設計などを考 えた場合、全主筋を SD70にするよりもむしろ最適な 鉄筋強度を選択して使用する方が有利であると考えら れるためである。
- ③あばら筋:あばら筋は SD70とする。あばら筋ピッチ などコンクリートのコンファインド効果を考えた場 合、この程度の強度のものが設計上有用であると考え Sns.
- (2) 建物階数:本研究では50階建てを考える.

(3) スパン長さ:スパン長さは、5.5m×5.5mの均等 スパンとする.

(4) 階 高:標準階高は2.8~2.9m とする. 1,2階は 4.5mとする.

(5) 構造形式: Fig. 1 に示すような純ラーメン構造で ある。

(6) はり、柱断面寸法:はり、柱断面寸法は施工の容易 さを考え、できるだけ種類を少なくする。すなわち、は り部材では主筋の使用材料強度の変化で対応し、柱部材

8

D6

(5)

3 LDK

2 LDK 鹵

I LDK

2 LDK R

3 LDK

F

5,500

G)

LDR

LDK 2 LDK 3 LDK

33.000

© B

(A)

E D

Fig.1 (a) 基準階平面図

ではコンクリート強度の変化で対応するようにする. Table 1 に,はり,柱断面の仮定寸法を示す.はり断面 は、はり成を全階80cmと仮定し、はり幅でせん断強度、 付着強度の調整を行う。Table 1 の柱断面寸法は床重量 を W=1.0tf/m²とし、中柱の長期荷重時の軸応力度が 各階で0.3Fc以下になることを目標に設計されている.

§3. はり部材の曲げせん断実験

3-1 実験概要

(1) 試験体種別

試験体は全部で12体であり、試験体種別の詳細および 実験時コンクリート強度を Table 2 に示す。試験体は Fc400シリーズと Fc600シリーズの2シリーズに大別 されている。両シリーズの相違はコンクリート強度のみ である. 各シリーズとも Fig.2 に示すように, 断面の曲 げ強度を同一鉄筋径で鉄筋本数を増加する方法と、同一 鉄筋本数で鉄筋径を増大させる方法の2種で設計されて いる.

階数	柱 cm (B×D)	はり cm (b×D)	コンクリート 強度 Fc(kgf/cm²)	
1	90 × 90	60×80	600	
10	80×80	60×80	Ļ	3
20	80 × 80	50×80	500	
30	70×70	50×80	400	
40	70×70	40×80	300	1
50	70×70	40×80	+	

西松建設技報 VOL.15

(2) 試験体の形状, 寸法および配筋

断面寸法は全試験体共通で、 $b \times D = 15 \text{ cm} \times 15 \text{ cm} \delta$ る. 試験体の形状, 寸法および配筋の例を Fig. 3 に示す. 試験部分は60 cm (a/D=2.0) である. あばら筋の間隔 は全試験体共通で 5 cmである.

(3) 使用材料

コンクリートは,設計基準強度 Fc=400kgf/cm³ {39.2 MPa}のものが434kgf/cm³ {42.6MPa}, Fc=600kgf/ cm³ {58.8MPa} のものが579kgf/cm³ {56.8MPa} であ った. コンクリートはシリーズごとに同一バッチのレデ イミクストコンクリートである.

鉄筋は、主筋の降伏強度は、D10、D13、D16でそれぞ れ σ_y =7850、7510、6870kgf/cm²{770、736、674MPa}、 あばら筋は D6 で σ_y =7050kgf/cm² {691MPa} であっ た.

(4) 加力方法

加力方法は大野式逆対称加力であり、手動式オイルジ ャッキ(100tf)により加力した.載荷は正負繰り返し加 力で行い、試験部分の部材角 R=0.5×10⁻²rad.ステッ プの漸増変形制御で行った.

(5) 変形および鉄筋ひずみの測定方法

変形の測定は,試験部分の相対たわみを電気式変位計 (1/100 mm)で測定した.主筋,あばら筋ひずみの測定を ワイヤーストレインゲージ(ゲージ長 2 mm)で行った.

3-2 実験結果および検討

(1) Q-R曲線および破壊状況

Fig. 4 に,荷重-変位曲線 (Q-R曲線) の一例を示 し, Fig. 4 の各試験体の最大荷重時きれつ図を Fig. 5 に示す.また,各試験体の最大荷重,限界部材角(0.8× 最大荷重時),計算値および破壊形式を Table 3 に示す.

全試験体とも曲げ降伏しており、Fc400シリーズと Fc600シリーズの同配筋のものは、破壊形式が同一であ

シリーズ	No.	試験体名	主筋	$\begin{array}{c} P_t \\ (\%) \end{array}$	Fc (kgf/cm²)	〔共通事項〕
	1	B 400-2 D 10	D10 D13 D16	0.76	434	は り 山=15.0cm
	2	B400-3D10		1.14		はりせい=15.0cm 有効せい=12.5cm
Fc400	3	B400-4D10		1.52		有効と、 - 12.50m せん断スパン
シリーズ	-4	B400-2D13		1.35		a/D=2.0 ($ba=60cm$)
	5	B400-3D13		2.03		主筋 SD70
	6	B400~2D16		2.12		あばら筋 SD70
	7	B 600-2 D 10	D10 D13 D16	0.76	579	$p_{\rm w} = 0.85\%$
	8	B600-3D10		1.14		加力
Fc600	9	B 600-4 D 10		1.52		主筋かぶり厚
シリーズ	10	B 600-2 D 13		1.35		2.5cm
	11	B600-3D13		2.03		
	12	B 600-2 D 16		2.12		

Table 2 試験体種別

Fig.2 断面の配筋

Fig.3 試験体の形状, 寸法, 配筋の一例(B400-2D10)

Fig.4 *Q-R* 曲線の一例

った. また, 両シリーズとも ptの大きい4D10, 3D13, 2D16試験体は、曲げ降伏後付着破壊しており、降伏直後、 最大荷重に達し荷重が急激に低下している.

(2) 諸計算値との比較

Table 3 に、各試験体の実験値および計算値を示す.

Table 3 実験結果および計算値一覧

	No.	試験体名	実験値*1		計算值		*4 破痍
シリーズ			最大荷重 (tf)	限界部材角 (×10 ⁻² rad.)	¢ QBC (tf)	。Q.*3 (tf)	形式
	1	B 400-2 D 10	4.87	>7.00	0.80	4.20	FC
	2	B 400-3 D 10	7.39	5.75	0.85	6.30	FC
Fc 400	3	B 400-4 D 10	8.94	4.54	0.90	8.40	FΒ
シリーズ	4	B 400-2 D 13	7.62	6.86	0.87	7.15	FC
	5	B 400-3 D 13	10.11	4.85	0.96	10.73	FΒ
	6	B 400-2 D 16	10.26	5.22	0.94	10.25	FΒ
	7	B 600-2 D 10	4.95	>7.50	0.91	4.20	FC
	8	B 600-3 D 10	7.32	6.31	0.96	6.30	FC
Fc 600	9	B 600-4 D 10	9.23	5.41	1.00	8.40	FΒ
シリーズ	10	B 600-2 D 13	7.84	5.73	0.98	7.15	FC
	11	B600-3D13	11.00	4.69	1.07	10.73	FΒ
	12	B 600-2 D 16	10.88	4.49	1.05	10.25	FΒ

*1:正負平均

*3:曲げ終局強度 *4:FC:曲げ降伏後曲げ破壊 FB:曲げ降伏後付者破壊

10

○ Fc400シリーズ

● Fc600シリーズ

→ 曲げ終局強度。Q₄(tf)

Fig.8 最大荷重と(2)式の比較

Ð

最大荷重

① 曲げ初きれつ強度

Fig. 6 は、 グラフから求めた各試験体の曲げ初きれつ 強度に関する実験値と計算値との関係を示したものであ る、Fc400, Fc600の両シリーズともばらつきがみられ るが、曲げ初きれつ発生荷重はほぼ1.0tf {9.8×10³N} 前後に集中しており,全試験体とも同程度の値を示して いる.実験値では,コンクリート強度あるいは主筋量な どによる相違の影響は特にみられなかったが、実験値に 対する計算値の比は0.75~1.25の範囲に分布しており, 実験値と計算値は比較的よく合致している。

 ① 曲げ終局強度

Fig.7は、各試験体の最大荷重に関するコンクリート 強度の違いによる影響を示したものである。Fc400シリ ーズと Fc600シリーズを比較した場合, コンクリート強 度を増大することによって最大荷重は多少増加してい る. 図中において, p_tが大きい3D13, 2D16の試験体はコ ンクリート強度の増大による最大荷重の増加する度合が 他の試験体に比べて大きい傾向が見られるが、これは Fc400シリーズでは Fc600シリーズに比べ,曲げ降伏後 の付着劣化の度合が大きく、この影響が最大荷重に現れ たものと思われる.

Fig.8は、最大荷重と曲げ終局強度計算値とを比較し たものである。実験値では B400-3D13試験体を除けば 計算値を上回っており, 安全側の値を示している. また, 実験値に対する計算値の比は0.94~1.18の範囲に分布 し、よく近似しており、SD70級の主筋と本実験範囲内で の高強度コンクリートを用いたはり断面の曲げ耐力は、 学会式で十分計算可能であることが認められた。

Fig.6 曲げ初きれつ強度に関する実験値と計算値の比較

^{*2:}曲げ初きれつ発生荷重 $_{c}Q_{BC} = 1.8\sqrt{F_{\epsilon}} \cdot Z_{\epsilon}/a \cdots (1)$

(3) 限界部材角に関する検討

Fig. 9 に,限界部材角に関する p_t およびコンクリート 強度の違いによる影響を示す. 主筋に D10を用いた試験 体では,限界部材角は 3 体とも Fc400シリーズよりも Fc600シリーズの方が上回っており,コンクリート強度 を上げたことによる影響が認められるが,D13,D16を用 いた試験体では必ずしも Fc600シリーズの限界部材角 が Fc400シリーズのそれを上回っているとは限らず,コ ンクリート強度を上げたことによる効果があまり認めら れない. p_t と限界部材角とを比較すると,Fc400シリー ズの場合には多少ばらつきがみられるが,Fc600シリー ズの場合も含め p_t が大きくなるほど限界部材角が減少 する傾向がみられる.

- (4) 主筋ひずみ分布
- ① ひずみ履歴について

Fig. 10は、曲げ降伏後付着破壊をしなかった B400 -2D10と降伏後付着破壊した B400-2D16の試験体にお ける主筋の特定位置でのひずみ履歴の一例を示したもの である。付着破壊しなかった B400-2D10では、例えば測 定点③での主筋は圧縮作用時に圧縮効果を発揮している が、付着破壊した B400-2D16では付着劣化によって圧 縮効果が減少し、次第に引張化していく現象が見られる。 ② 各測定点での引張ひずみの最大値

Fig. 11は、測定点①、③における主筋の引張ひずみ の最大値を p_t との関係で示したものである。各試験体と も材端では降伏 (D10 ($\epsilon_y = 0.58\%$)、D13、D16 ($\epsilon_y = 0.40\%$))している。また、測定点①の引張ひずみの最大 値は p_t が大きくなると小さくなる傾向がみられるが、測 定点③ではその傾向があまりみられない。

Fig. 12 は、Fc600シリーズで p_t の小さい B600-2 D10と p_t の大きい B600-2D16試験体の各測定点での引 張ひずみの最大値を比較したものである、2D10では測定 点①、②、⑤、⑥で降伏しているのに対し、2D16では測 定点①、⑥で降伏しているが測定点②、⑤では降伏して おらず、塑性域が小さくなっていることが分かる。

(5) 付着応力度分布

① 部材中央部(③~④区間)における付着応力の履歴 Fig. 13(a),(b)は、Fc400、Fc600シリーズでそれ ぞれ曲げ降伏後付着破壊しなかった2D10試験体と付着 破壊した3D13試験体の部材中央部における付着応力度 を部材角との関係で示したものである。Fc400、Fc600 両シリーズとも付着破壊しなかった2D10試験体では部 材中央部での付着応力度が曲げ降伏後付着応力度が低下 しないのに対して、付着破壊した3D13試験体では付着応 力度分布はパラボラ状になり、付着応力度が最大値を示

Fig.10 特定位置での主筋のひずみ履歴の一例

Fig.11 主筋の引張ひずみの最大値(測定点①, ②)

Fig.12 各測定点での主筋の最大引張ひずみ分布の一例

Fig.13 部材中央部(③~④)区間での付着応力の履歴

②部材中央部(③~④区間)の付着応力度の最大値およ び計算値との比較

Fig. 14 は, Fc400, Fc600両シリーズにおける各試

した後、付着効果が低下していることが分かる。

Fig.14 部材中央部 (③~④) 区間における 最大付着応力度

Fig.15 部材中央部 (③~④) 区間の 最大付着応力度と計算値の比較

験体の部材中央部(③~④区間)における付着応力度の 最大値を示したものである.鉄筋径が同一なら鉄筋本数 の多いほど、また鉄筋本数が同一ならば鉄筋径の大きい ほど最大付着応力度が低下する傾向がみられる.本実験 では、コンクリート強度の増大による部材中央部の付着 強度に対する効果は明確にはみられなかった.

Fig. 15 は, Fig. 14 に示した部材中央部(③~④区間) における最大付着応力度と藤井・森田の(3)式の計算 値との比較を示したものである.

 $\tau_u = (0.307b_i + 0.427)$

 $+24.9kA_{st}/_sNd_b)\sqrt{F_c}$ (3)

曲げ降伏後付着破壊した試験体の最大値は比較的(3) 式の計算値と近似しているが、付着破壊しなかったもの は計算値とのばらつきが大きい.

§4. まとめ

以上,本実験の範囲内で次のことが認められた.

 Fc400および Fc600シリーズとも各試験体の履歴 曲線は逆S型のループであった。

- ② 鉄筋径が同一で配筋本数を増やすと、曲げ破壊から 付着破壊へ移行する。
- ③ 鉄筋本数が同一で主筋径を増すと、曲げ破壊から付着破壊へ移行する。
- ④ 曲げ初きれつ荷重の実験値と計算値は、多少のばら つきはあるが、比較的よく一致している。
- ⑤ 最大荷重と曲げ終局計算値はよく合致しており、 SD70級の主筋と高強度コンクリートを用いたはり断 面の曲げ耐力は、(2)式で十分計算可能であることが 認められた。
- ⑥ 限界部材角に与えるコンクリート強度の影響はほとんど認められないが、 p_iが大きくなるほど限界部材角が減少する傾向がみられた。
- ⑦ 付着破壊する試験体の,はり中央部の主筋ひずみは、 変形の増大とともに引張化する傾向にある。
- ⑧ 材端の引張主筋の最大ひずみは、p_tが大きいほど小 さくなる傾向にある.またその最大ひずみの大きさは、 Fc400、Fc600シリーズでよく近似した値を示した。
- ⑨ 曲げ降伏後付着破壊した試験体の部材中央部での付 着強度は最大値を示した後、低下する傾向がみられた。
- ⑩ 降伏後付着破壊した試験体の部材中央部の最大付着 応力度は(3)式の計算値と比較的よく合致することが 認められた。

§5.おわりに

本研究は、東北工業大学田中研究室と当社技術研究所 の共同研究であり、田中礼治教授の御指導で行ったもの です.ここに謹んで感謝の意を表します.また、実験に 際し、大芳賀義喜助手、田中研究室卒論生には、多大な 御助力を賜ったことに感謝の意を表します.

参考文献

- 1)鉄筋コンクリート構造計算規準・同解説(1982),日 本建築学会。
- 2)鉄筋コンクリート造建物の終局強度型耐震設計指 針、日本建築学会。
- 3)藤井・森田ほか:異形鉄筋の付着割裂強度に関する 研究(第2報),日本建築学会論文報告集,第324号,昭 和58年2月.
- 4)藤井・森田ほか:鉄筋コンクリート T 形梁の耐力と 靱性に関する2,3の考察,日本建築学会梗概集 昭和 63年度,pp.235~236.
- 5) 狩野・高木ほか:付着割裂破壊に支配される梁のせん断耐力, コンクリート工学年次論文報告集, 11-2, 1989, pp.81~86.