本設地盤アンカー(永久アンカー)の開発(その2) (本設斜め地盤アンカーの開発)

Development of Permanent Ground Anchor (Part 2, Development of Inclined Ground Anchor)

> 武内 義夫* Yoshio Takeuchi

小林 康之** Yasuyuki Kobayashi

宮崎 啓一*** Keiichi Miyazaki

要 約

筆者らは、1990年5月に建築基礎に用いる本設地盤アンカー工法(鉛直アンカー)の開発を完了し、開日本建築センターの研究委員会での技術審査を終了した.この開発経緯は、 前報 vol. 14で報告を行っている.引き続き傾斜地における偏土圧による滑り、あるいは転 倒防止等に有効に用いることが出来る本設斜め地盤アンカー工法(斜めアンカー)の開発 を行い、1991年9月に閉日本建築センターの評定(BCJ-F640)を取得した.

開発にあたっては、斜めアンカーの仕様の検討および実大アンカーを用いた原位置試験 を中心に行った.

原位置試験では砂れきおよび土丹(固結シルト)地盤の各層を定着地盤とした施工性試 験・各種載荷試験等を実施し、本アンカーの施工管理方法の確立および力学特性を把握し た.これらの試験を踏まえて、「本設斜め地盤アンカー工法設計・施工指針」をまとめ、実 用建物への適用を可能にした.

- 目 次
- §1. はじめに
- §2. 斜めアンカーの構造と種類
- §3. 原位置試験
- §4. おわりに

§1. はじめに

従来,建築構造物におけるグラウンドアンカーは,主 に仮設構造体として用いられてきた.しかし,近年のア ンカーの耐久性ならびに信頼性の向上にともない,本体 構造物の一部として用い得る本設地盤アンカー(永久ア ンカー)の研究開発が進められ,鉛直アンカーに関して はすでに実用に供され始めている.ところが斜めアンカ ーについては更に研究開発が必要とされている.このた め筆者らは,鉛直アンカーに引き続き斜めアンカーの開 発を行った.

永久アンカーの用途は広範囲にわたっている。例えば、 鉛直アンカーでは地震力・暴風による基礎の浮き上がり 防止、塔状建物・煙突・鉄塔などの転倒防止、水圧によ る建物の浮き上がり防止等が、また斜めアンカーでは傾 斜地における偏土圧による滑り・転倒防止等に有効に用 いることができる。

斜めアンカーをこのような目的で使用するためには, 鉛直アンカーと同様に,構造物の使用期間中の耐久性と 信頼性の確保が要求される.またこの条件を達成するた めの施工管理が重要な要素となっている.

鉛直アンカーと比較した場合、斜めアンカーは打設さ

^{*}技術研究所先端技術研究課係長

^{**}技術研究所先端技術研究課長

^{***}技術研究所土木技術課係長

れる方向が重力の方向と異なるために、アンカー定着体 とグラウトの被り厚さの確保が困難になる。また、削孔 精度の確保やアンカー組立材の挿入性などの施工上の問 題や、施工角度の違いによるアンカーの引抜き抵抗力の 違いなどが考えられる。このため、被り厚さの確保のた めに、数種類のセンタライザーを考案した。

本報では、本設斜め地盤アンカーの開発と工法の確立 に際して行った原位置試験の検討を中心に報告する.

§2. 斜めアンカーの構造と種類

斜めアンカーの構造は Fig. 1 に示したように, 基本的 には鉛直アンカーと同一であるが, アンカー定着部の定 着体に対するグラウトの被り厚さを確保するためのセン タライザーが取り付けられる.

このアンカーは、アンカー頭部で引張り材(タイブル) に導入された緊張力が直接アンカー定着部下端に伝達さ れ、圧縮力として定着体を介してグラウト、更に地盤へ と伝達されるいわゆる圧縮型アンカーである.このため、 アンカー体のグラウトには通常の引張型アンカーのよう な引張り力による亀裂が発生せず、耐久性にも非常に優 れた機構になっている.

またアンカーと構造物との定着はネジ式定着工法であ るため再緊張も容易に行える。更に、本アンカーは工場 において製作・組立てを行うため高品質を確保できるこ とも大きな特徴になっている。

斜めアンカーのタイプは Table 1 に示したように,引 張り材 (タイブル)の強度によって6種類ある.

センタライザーは削孔径および斜めアンカーのタイプ によって、合成樹脂製のリング式、金属製のバネ式、地 上からグラウトを注入して膨らませる弾力のある布製の パッカー式の3種類があり、定着体の上部と下部に取り 付けられる.なお、使い分けは Table 2 による.

§3. 原位置試験

3-1 試験概要

砂れきおよび土丹(固結シルト)地盤で実大の斜めア ンカーを施工し,その施工性および力学特性等の試験を 行った.砂れき地盤(試験サイトA)での試験は東京都 青梅市で,土丹地盤(試験サイトB)での試験は神奈川 県横浜市で行った.

試験サイトAは、過去に行った鉛直アンカー試験ヤードと同一の場所である。武蔵野台地西部で立川段丘の西縁に位置し、土層構成は立川ローム層、立川れき層、上総層群シルト層と層序を成している。

試験サイトBは多摩丘陵に位置し,造成地であるため 本来表部に堆積している関東ロームが削られている.土 層構成は凝灰質粘土層,三浦層群土丹層,三浦層群砂質 土層と層序を成している.

原位置試験に用いた斜めアンカーの仕様を Table 2 に,試験サイトAおよびBにおける力学特性試験体の配 置断面および土質を Fig. 2, Fig. 3 に示す.

3-2 斜めアンカーの施工性試験

(1) 試験方法

斜めアンカーの標準的な施工方法を Fig. 4 に示す. 試 験アンカーの削孔はロータリーパーカッション方式で, 削孔用水は清水を使用した.

施工性試験では、削孔精度、アンカー組立材の挿入性 および施工能率等を調べた.またアンカー体の出来上が り状態を観察するため、オープンカット工法(試験サイ トA)および深礎工法(試験サイトB)によってアンカ

	() () () () () () () () () () () () () (⑤ 【】 」」通,					(1) (1) アンカー中間 (1) (1)	一 (2) 部断面	13 12 13 12 16 アンカー定着部断面 センタライザーの名称
(5)	頭部キャップ	9	頭部養生管	13	タイブル	A MD		1	リング式センタライザー
6	支圧板	10	スライドパイプ	14	定着体	シカー先端	₩↓余長	2	中間バネ式センタライザー
7	頭部シース	1	センタライザー 取付け鋼管	15	先端部ナット			3 4	バッカー式センタライザー 先端バネ式センタライザー
(8)	補強筋	12	グラウト	16	先端部キャップ				

(バネ式センタライザー、パッカー式センタライザーを用いた場合) Fig.1 斜めアンカーの構造

アンカータイプ		F100TC	F130TC	F160TC	F200TC	F230TC	F270TC		
規格引張荷重 T _{us} (tf)		95.0	126.0	165.1	190.5	222.3	258.5		
規格降伊	代荷 重	T_{ys} (tf)	83.3	110.4	144.4	166.9	196.0	226.2	
最大有効	紧張力 ,	$_{m}P_{e}$ (tf)	59.8	79.3	103.9	119.9	140.0	162.8	
多重より PC 綱より線構成			7 × \$11.1	7 × ¢12.7	7 × \$\$15.2	19× \$\$ 9.5	19× ¢10.8	19× \$11.1	
多重より PC 鋼より線 断面積 (mm)			519.3	691.0	970.9	1042.0	1323.9	1409.6	
被覆多重より PC 鋼より線 断面図 (mm)			33.3 ★★ ★★ 43.3	38.1 ★★ 38 .1 48 .1	45.6 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	47.5	54.0 54.0 67.0	55.5 55.5	
	涂壮古	内径	\$ 66.0			\$ 92.0			
定着体径	主权有	外径	\$ 87.0			\$ 121.0			
(mm)	ider itte forr	内径	\$ 66.0	\$ 65.1	\$ 92.0		\$ 92.0	\$ 92.0	
	± a∰	外径	ø 87.0	ø 89.1	ø118	8.0*	¢121.0	\$ 123.0	
削	削 孔 径(mm)		φ17	0.0	¢170.0, ¢216.0*				
セン	センタライザー			グ式	削孔径 φ170 先端バネ式 + パッカー式 または 先端バネ式 + 中間バネ式 削孔径 φ216 リング 式				
							*鉛直アンカ	ーと異なる値	

Table 1 斜めアンカーの種類

Table 2 試験アンカー一覧

定着	試験の種類	試験体 記 号	アンカー	施工 角度	アンカー長*	定着長	定着体センタライザー		1/11 71 444	/1117.
地盤			タイプ				下部	上部	19171.1738	Ung 45
	削孔試験	SA- 1	-	15°	(40.0m)	-	-	— .	HDS-JL	削孔のみ
砂	施工性試驗	SA- 2	F100TC	15°	20.2m	6.0m	リング式	リング式	MKD-106	掘出し観察
n z		SA- 3	F200TC	15°	20.8m	6.0m	バネ式	パッカー式	MKD-106	掘出し観察
地	引抜き試験	SA- 4	F270TC	45°	10.3m	1.0m	バネ式	パッカー式	MKD-106	
盤		SA- 5	F270TC	30°	13.8m	1.0m	バネ式	パッカー式	MKD-106	
		SA- 6	F270TC	15°	20.8m	1.0m	バネ式	パッカー式	MKD-106	
	削孔試験	SB- 1	-	15°	(40.0m)	-	-	-	MCD-8	削孔のみ
	施工性試験	SB- 2	F200TC	15°	20.8m	6.0m	バネ式	バネ式	MCD-8	掘出し観察
上丹		SB- 3	F270TC	45°	10.3m	1.5m	バネ式	パッカー式	MCD-8	
地	引抜き試験	SB- 4	F270TC	30°	13.8m	1.5m	バネ式	パッカー式	MCD-8	
盤		SB- 5	F270TC	15°	20.8m	1.5m	バネ式	パッカー式	MCD- 8	
	長期引張り 試 験	SB- 6	F200TC	15°	20.8m	6.0m	バネ式	パッカー式	MCD-8	

注)削孔径は全て170mmである。

*アンカー長:削孔面からアンカー組立材先端部キャップまでの長さをいう。 ただし、SA-1、SB-1は削孔長である。

Fig.4 斜めアンカーの施工方法

	配合(kg∕m³)		範囲および管理値				
セメント C	水 W	混和剤	W/C (%)	圧縮強度♂₂8 (kgf/cm²)	フロー値 (sec)	比重		
1226	594	18.4	50	300以上	15以下	設計±0.04		

注) 混和剤は NL-4000を使用した.

卢 关 44 49	試験体	周	長 (m	m)	直径 (mm)			
正有地盛	記号	最小	最大	平均	最小	最大	平均	
でいいたよりあみ	SA- 2	563	600	582	176	188	181	
砂れさ地盤	SA- 3	555	595	574	174	184	180	
土丹地盤	SB- 2	547	617	568	170	180	173	

Table 4 アンカー体の周長と直径

ーを掘り出し,アンカー体の形状や周長を観察した.そ の後,定着部およびセンタライザー部を水平に切断し, 断面の観察および定着体のグラウトの被り厚さ,センタ ライザーの効果などを調べた.なお,試験アンカーに使 用したグラウトの配合を Table 3 に示す.

(2) 試験結果

削孔精度

斜めアンカー工法の適用範囲の最小施工角度15°(水平 面下向き),最大削孔長40mで削孔し,その精度を確認し た.なお,削孔径は170mmとした.試験サイトAにおける 削孔試験 SA-1では,N値50以上の砂れき層が30m 以上続くことを考慮して,高出力型の削孔機である HDS-JL型ハイパックドリルを使用した.

削孔精度測定は、坑井傾斜測定システム(TV-ON-Line システム)を用いて1mピッチで行った。

測定の結果,40m 削孔した砂れき地盤でのSA-1の 孔先端位置のずれおよび精度は,基準ラインに対して水 平方向で削孔方向に向かって右へ335 mm (1/119),鉛直 方向で上方に638 mm (1/63) であった。同じく土丹地盤 でのSB-1では,水平方向で右へ972 mm (1/41),鉛直 方向で下へ782 mm (1/51) であった。

② 周長および被り

試験サイトAにおける施工性試験体 SA-2 および SA-3の2体, 試験サイトBにおける SB-2の1体, 合計3体のアンカー体を掘り出し,出来上がり状況を観 察した.いずれの試験体も施工角度15°,削孔長約21m, 定着長6.0m とし,アンカータイプは SA-2 が F100 TC, SA-3 および SB-2が F200TC とした.

それぞれのアンカー体定着部を1mごとに周長と直 径を測定した. 測定結果を Table 4 に示す. いずれも設 計値(周長534 mm, 直径170 mm)を上回った値となってい る. 砂れき地盤で掘り出した SA-2, SA-3のアンカ 一体は,定着層が粘性土を含む砂れき層であったため, グラウトの地盤への浸透は顕著ではなく,アンカー体に れきなどの付着は比較的少なかった. 土丹地盤で掘り出 した SB-2のアンカー体は,グラウトのみで形成され たほぼストレートな幹体であった.

定着体の被り厚さに関しては、定着体部分のアンカー 体を約1mごとに切断し、1断面につき8方向について のグラウトの被り厚さの測定を行った。これらの測定結 果より、SA-2では、最小30mm、最大57mm、平均42.6 mmであり、SA-3では、最小19mm、最大29mm、平均24 mmであった。また SB-2では、最小19mm、最大57mm、 平均29mmであった。いずれの試験体も被り厚さの目標値 である20mmをほぼ満足し、新しく開発したセンタライザ ーが被り厚さ確保に有効に機能し、耐久性が期待できる ことが確認された。

3-3 斜めアンカーの力学特性試験

(1) 試験方法

斜めアンカーは、施工角度の違いにより極限引抜き力 に差が生じる可能性がある.このため Fig. 2, 3 に示し たように、定着地盤が砂れき地盤の試験サイトAおよび 土丹地盤の試験サイトBで、定着深さがほぼ同一地層に 対して、施工角度が45°(SA-4、SB-3)、30°(SA-5、SB-4)および15°(SA-6、SB-5)の3種類、 合計6体の斜めアンカーの引抜き試験を行った.これに より斜めアンカーの引抜き抵抗の性状を把握し、施工角 度が極限引抜き力に与える影響の有無を調べた.なおア ンカー中間部は、周辺地盤との摩擦を取り除くため、施 工時にグラウトの水洗いを行った.いずれもアンカータ イプは F270TCとし、定着長は砂れき地盤では1.0m、 土丹地盤では1.5mとした.

また土丹地盤においては、地盤のクリープや引張り材 (タイブル)のレラクセーション等によるアンカーの長期 の安定性を見るため約2ヶ月間の長期引張り試験を行っ た.なお、長期引張り試験体 SB-6では、実際の施工を 考慮してアンカー中間部の水洗いは行っていない.施工 角度は15°、アンカータイプは F200TC とし、定着長は 6.0m とした.

測定項目は、アンカー頭部荷重、アンカー頭部変位量、 定着体のひずみ度等である。ひずみ度は定着体の上(①)、 中(②)、下(③)の3断面に貼り付けた各々3枚のゲー ジの平均値である。

引抜き試験における載荷方法は、計画最大荷重をほぼ 引張り材 (タイブル)の規格降伏荷重 T_{ys} の0.9倍とし、 初期荷重 P_0 は20tf (196kN), 1段階20tf (196kN)の 多サイクル載荷 (最大計画9サイクル) により引抜ける まで載荷した.また、長期引張り試験では、定着時緊張 力を引張り材 (タイブル)の規格降伏荷重 T_{ys} の0.8倍と して、2ヶ月間の経時変化を調べた.なお事前に多サイ クル載荷による確認試験を行った.

(2) 試験結果

引抜き試験では、砂れきおよび土丹地盤に定着したア ンカーはすべて引抜けた。アンカー頭部荷重とアンカー 頭部変位量を Fig. 5, Fig. 6 に、定着体のひずみ度分布

Fig.5 アンカー頭部荷重 – 変位関係(試験サイトA)

Fig.6 アンカー頭部荷重 – 変位関係(試験サイトB)

Table 5 アンカー体と地盤の摩擦応力度の最大値

	2 着 試験体 2 盤 記 号	施工角度	方法-1		方法- 2		方法-3		方法-4	
定着地盤			$ au_{gmax1}$ (kgf/cm²)	アンカー 頭 部 荷 重 (tf)	τ _{gmax2} (kgf/cm²)	アンカー 頭 部 荷 重 (tf)	τ _{gmax3} (kgf/cm²)	最大荷重 <i>P_{max}</i> (tf)	$ au_{gmax4}$ $(kgf/cm²)$	最大荷重 <i>P_{max}</i> (tf)
砂 れ	SA- 4	45°	(29.7)*1	(160)	(27.3)	(160)	31.2 (27.7)	180 (160)	19.3 (17.1)	180 (160)
き 抽	SA- 5	30°	27.7	186	22.1	186	32.2	186	19.9	186
盤	SA- 6	15°	32.1	160	24.6	160	27.7	160	17.1	160
±.	SB- 3	45°	- (26.8)*1	(185)	(14.7)	- (185)	27.5 (23.1)	220 (185)	19.5 (16.4)	220 (185)
丹地	SB- 4	30°	36.7	220	*2	_	27.5	220	19.5	220
盤	SB- 5	15°	_ (33.2)*1	(200)	(18.9)	(200)	26.2 (25.0)	210 (200)	18.6 (17.7)	210 (200)

(方法-1):定着体のひずみ度測定結果から、定着体とグラウトは同一ひずみ度であると仮定して、定着体ひ ずみ度の各測定位置間の差から求める方法で,測定位置間を①~②間,また②~③間とする方法. (方法-2):(方法-1)と同様に、測定位置間を①~③間とする方法。

(方法-3):アンカー頭部荷重の最大値をアンカー体表面積で除して求める方法で、アンカー体表面積を求め る際の定着長を定着体長と仮定する方法.

(方法-4):(方法-3)と同様に、定着長を定着体下端からパッカー式センタライザー上端までの距離と仮定 する方法.

- 注*1) SA-4, SB-3, SB-5 試験体は定着体に貼り付けたひずみゲージが最大荷重に達する前に破断し,最大 荷重時のひずみ度は測定できなかった、そのため、これらの表にはひずみ度が測定できた荷重までの最大 値とその時のアンカー頭部荷重を()内に示した.
- 注*2) SB-4 試験体の測定点① (定着体上部) でのひずみ度は、アンカー頭部荷重が60tf のときまでしか測定さ れなかった。

Fig.9 アンカー頭部荷重の経時変化(SB-6)

Table 6 残留緊張力および緊張力の減少量

経過時間	定着時緊張力 (tf)	残留緊張力 (tf)	減 少 量 (tf)	見かけのレラクセ ーション量(tf)
2ヶ月(実測)	105 01	133.34	2.47 (1.8%)	1.91 (1.4%)
65 年(推定)	135.81	131.68	4.13 (3.0%)	3.08 (2.3%)

()は、定着時緊張力に対する割合

を Fig. 7, Fig. 8 に示す.

砂れき地盤における極限引抜き力は SA-6 (15°) が 160tf (1568kN) と SA-4 (45°) の180tf (1764kN) および SA-5 (30°) の186tf (1823kN) と比べて若干 低下しているが, Fig.2 の試験体配置断面にも示したよ うに, SA-6の定着位置は他の2体より約2m浅く,ま たこの層は粘性土を多く含んでいたためと考えられる.

土丹地盤における SB-3 (45°), SB-4 (30°), SB-5 (15°)の極限引抜き力は, 210~220 tf(2058~2156 kN) でほぼ同じであった.

次にアンカー体と地盤の摩擦応力度の最大値 τ_{gmax} について、Table 5 に示す(方法-1)~(方法-4)に より検討を行った.(方法-1, 2)は定着体のひずみ度 測定結果より算出し、(方法-3, 4)はアンカー頭部荷 重より算出を行った.なおグラウトの弾性係数は、 1.50×10^5 kgf/cm²(1.47×10⁴MPa)、有効断面積は、施 工性試験結果より砂れき地盤では156.47 cm²、土丹地盤で は117.56 cm²とした.

Table 5 の結果より、 τ_{gmax} の値は砂れきおよび土丹 地盤において、それぞれ施工角度45°、30°および15°の3 つの試験体間で明確な差は認められなかった。ただし(方 法-1) ~(方法-4)の解析手法の違いによる結果では 差が認められ、(方法-4)が低めの値を示す傾向にある のがわかった。

また,土丹地盤で行った SB-6の長期引張り試験結 果のアンカー頭部荷重の経時変化を Fig.9 に示す.図中 の定着100分後と2ヶ月後の測定値を結ぶ直線(実線と 破線)により、65年後の残留緊張力を推定し、定着2ヶ 月後および65年後の残留緊張力ならびに緊張力の減少 量などをまとめると Table 6 のようになる.なお見かけ のレラクセーション量とは、緊張力の全減少量から反力 盤の変位に起因する減少量を除いたもので,引張り材(タ イブル)のレラクセーションおよびアンカー体と定着地 盤のクリープに起因するものである.この結果より65年 後の残留緊張力は、定着時緊張力の97%と予測された.

§4. おわりに

本設斜め地盤アンカー工法を確立するため実施した, 施工性試験および力学特性試験を中心に開発経緯を報告 した.これらの結果に基づき,「本設斜め地盤アンカー工 法設計・施工指針」をとりまとめ、(財日本建築センター の評定を取得した.今後は鉛直アンカーと同様に,実際 の設計,施工を通じてデータの収集充実に努めたいと考 えている.なお,この一連の研究は当社を含めて,安藤 建設(株)(株) 準治組,住友建設(株)、(株) 後高組、東海興業(株) 戸田建設(株)、(株) フジタ,三井建設(株)、(株) エスイー (旧新 構造技術(株))、構造工事(株)、日特建設(株) および日本基礎技 術(株) との共同研究として行ったものである.

参考文献

- 1) 西松建設: PTC 本設地盤アンカー工法設計・施工 指針,平成2年.
- 2) 西松建設: PTC 本設斜め地盤アンカー工法設計・ 施工指針, 平成3年.
- 3) 有山峰夫ほか: 圧縮型本設地盤アンカー工法に関す る研究(その1~その3), 第25回土質工学研究発表会, pp.1541~1548, 1990.
- 4)小林康之ほか: 圧縮型本設地盤アンカー工法に関する研究(その4~その8),日本建築学会大会学術講演 梗概集,pp.1655~1664,1990.
- 5) 山本和博ほか: 圧縮型本設斜め地盤アンカー工法に 関する研究(その1~その3),日本建築学会大会学術 講演梗既集, pp.1511~1516, 1991.