土被りの浅い大断面シールド工事における地盤変状防止対策

The Counterplan of Ground Deformation for the Large Diameter Shield Tunneling Method under Conditions of Thin Overburden

> 倉岡 豊* Yutaka Kuraoka

要 約

本報文は,福岡市高速鉄道1号線延伸工事榎田東工区における泥水式シルード (¢10.2 m,延長958.9m)の施工報告である。工区延長のうち,終端側350mは、空港エプロン部 直下(土被り0.7D~1.0D)であり,地表面沈下量は10mm以下が要求された。そこで,地盤 変状を計測しながら、切羽の泥水管理を含めて慎重な施工管理を実施した。その結果,目 標の地表面沈下量10mm以内を満足することができ、地上構造物への影響を避けることがで きた。

- 目 次
- §1. はじめに
- §2. 工事概要
- §3. 泥水配合検討および泥水管理
- §4.計測施工による掘進管理
- §5. おわりに

§1. はじめに

福岡市高速鉄道1号線博多~空港間延伸工事は、九州 の陸の玄関口JR博多駅と空の玄関口福岡国際空港とを 結ぶ、延長約3.1kmの地下鉄工事である。当該工事は、こ のうち博多区榎田に構築する榎田中間換気所を発進立坑 とし、空港内到達部までを泥水式シールド(複線新面) で施工したものである。特に、シールド延長958.9mの うち約800mが福岡空港内のエプロン下であり、土被り 10~15mの深度を直径10.2mの泥水式シールドにより 掘進するため、施工時の沈下抑制が極めて重要な課題と なった、

*九州(支)福岡薬院(出)所長

そのため、先ず立坑施工時に採取した土をもとに泥水 に関する特性試験並びに浸透実験を実施し、泥水特性の 管理目標値を満足するような配合を選定するとともに、 実地盤への適応性も確認した.次に、シールド通過に伴 う地盤変状の管理のために、事前に有限要素法(以下、 FEM)により、切羽部およびテールボイド部における応 力解放率と地盤沈下の関係を解析した.さらに、それら の結果並びにトライアル区間における沈下計測結果をシ ールド掘進操作にフィードバックする管理施工を実施し た.その結果、地表面沈下量を10mm以内に管理すること が可能となり、当初懸念されていた地上構造物への影響 もなかったので、その詳細を報告する.

§2. 工事概要

2-1 工事概要

工事概要を Table 1 に,路線および地質縦断図を Fig. 1 に示す.シールド発進直後に民地である福山通運 倉庫直下を通過した後,空港内を斜めに横断し,空港エ プロン部,給油管,駐機場下部を通過する路線である. また,シールドの構造を Fig. 2 に示す.

Table 1 工事概要

発注者	福岡市交通局
工事名	福岡市高速鉄道1号線 榎田中間換気所および地下一般部工事(榎田東工区)
工事場所	福岡県福岡市博多区榎田1丁目~大字下臼井
工期	昭和62年9月13日~平成3年10月1日
工事内容	立 坑 工:連続地中壁一式 泥水加圧シールド工 (一次覆工) (1)シールド延長 958.9m (2)シールド機外径 φ10.200mm (3)セグセント (ダクタイル, RC中子形) 952リング 二次覆工:インバートコンクリート延長 959.9m 防 護 工:(1)凍結工 (発進部) 一式 (2)薬液注入工 (発進部, 到達部) 一式 線 形:直線部 411.576m, 曲線部 (<i>R</i> =600m) 547.324m

2-2 地質概要

地質は、上部より沖積シルト層、沖積砂層および風化 花崗岩、さらに中世白亜紀の花崗岩の基盤から成ってい る.シールドは大部分が N 値50以上の風化花崗岩(マサ 土)を通過する.土被りの浅い到達部付近では、下半に 圧縮強度10~150kgf/cm²(0.981~14.7MPa)の未風化 花崗岩が、クラウン部には沖積砂層が出現する.各土層 の物性値については、Table 2 に示すとおりである.な お、主要計測断面 (B_E, C_E, E_E断面) および給油管横 断部(G_E断面)の土質構成とシールドの位置関係を, Fig. 3 に示す.

§3. 泥水配合検討および泥水管理

3-1 地盤変状の発生要因

西松建設技報 VOL.15

シールド工法における地盤変状の発生要因としては, 次のものが考えられる. ①シールド掘進に伴う周辺地山の攪乱 ②切羽における地山崩壊 ③テールボイドの応力解放に基づく弾塑性的沈下 ④裏込め注入の不良および時間的遅れ ⑤蛇行修正,曲線施工時の余掘り ⑥地下水の流入による圧密沈下 ⑦セグメントリングの変形 ①,③および⑦については、トンネル径,土被り,地盤 の土質特性等に起因するものであり、シールド工法の特 性上避けられないものである.一方,これら以外の要因 は施工に起因するものであり、当該工事では次に示すよ うな施工法を採用することにより防ぐこととした.

- ・良好な泥水の使用と厳密な泥水管理(②,⑥).
- ・即時裏込め注入工(④).
- ・自動測量によるリアルタイムの線形管理とファジィ制 御による自動運転(⑤).
- ・地盤変状計測による計測管理施工

この章では、泥水式シールド工法において特に重要な「泥水管理」について報告する.

3-2 全体フロー

泥水配合検討の全体フローを Fig.4 に示す. 作泥水の 配合を決定するために、まず選定した泥水材料で試験練 り並びに泥水特性試験を行い、管理基準値を満足するよ

Table	2	物性值一覧表
Table	2	物性值一覧表

	沖積粘性土層	沖積砂質土層	请砂質土層 洪積粘性土層 洪積砂質土層			風 化 花 崗 岩 層 G.			
	a c	a s	d e	d s	D s2岩盤	Dsi岩盤	C₂岩盤	C1岩盤	B岩盤
深度 GL-m	1.5~2.5	1.5~ 8	7~15						
N 値 (平均N値)	0~5	1~33(5~10)	5	$5 \sim 50$ (15 ~ 30)	25~50	50以上。	_		
細粒分含有量: Fc (%)	50	5~22	78~93	5 - 22	25	5~28	6	5	_
均等係数:Uc	6	3 ~ 62 (5 ~ 20ガ主)		8 ~ 167 (5 ~ 20が 注)	73~100	10~192 (主として100前後)	15	10	_
透水係数:K (cm/s)	_	$5 \times 10^{-3} \sim$ 1 × 10^{-3}	_	$1 \times 10^{-2} \sim$ 1 × 10^{-3}	1 × 10 ⁻⁵	(4.69×10 ⁻⁵ ~ 1.43×10 ⁻³) 主として1×10 ⁻⁴	1 ×10 ⁻⁵	1×10^{-5}	-
水頭位置: <i>h</i> 。 T.P.±m		T.P.+3.0m (GL-1.2)		T.P.+1.0~ 4.0m	T.P.+2.0~ 3.0m	T.P.+2.0~ 3.0m	T.P.+2.9 GL-1.0m	T.P.+2.8 GL-1.1m	_
一軸圧縮強度 q.	_	-	0.6kgf/cm [*]		_		20∼48 kgf/cm²	56∼90 kgf/cm²	100~209 kgf/cm ³
粘着力C。 (kgf cm²)	_		0.4kgf/cm²	_		0.2kgf/cm²		_	
内部摩擦角 φ	_		0°	-		30*			_

Fig.1 路線および地質縦断図

うな配合を選定する、次に、泥水の実地盤に対する泥膜 形成の優劣を判断するために、実地盤を用いた浸透実験 を行う. さらに、実施工中は特性試験を定期的に行い泥 水特性の管理に努める.

シールド	· 機本体要目
外径	\$\$10,200mm
機長	9,0 90mm
総推力	9,900tf
切羽面積当り推力	121tf/m²
シールドジャッキ	300tf×1200st×33本

3-3 泥水特性試験および浸透実験

泥水特性試験項目と管理基準値を Table 3 に, 浸透実 験装置を Fig. 5 に, 浸透実験フローを Fig. 6 にそれぞ れ示す. 模擬地盤としては立坑掘削時にサンプリングし た試料を用いるが, 完全に実地盤を再現することは不可 能である.本実験では, 透水係数を実地盤と一致させる ことを目標に模擬地盤を作成した.地盤作成後は直ちに 泥水を注入し, 0.2kgf/cm²(0.02MPa)で加圧し, 地盤 中の間隙水圧および逸水量の経時変化を記録した.

Table	3	試験項目およ	び管理基準値
-------	---	--------	--------

計 験 項 目		测定器具	管理基准值			
比	重 試 験	マッドバランス	1.1~1.2			
	ファンネル粘性(FV)	ファンネルロート	25 ~ 35 s			
	見かけ粘性 (AV)		-			
レオロジー特性	プラスチック粘性(PV)	ファンVGメータ	12~20cp			
	イールドバリュウ(YV)	(MODEL 135)				
	ゲルストレングス(GS)					
濾過特性試験(API規格)		濾過試験器(P=3kgf/cm)	20ccに1 ド			
安定性	試験(沈降分離)	メスシリンダ(1000cc)	90%JLE			

Fig.5 浸透実験装置

3-4 結果の考察

泥水特性試験結果より基準値を満足する配合の範囲が 見い出された.この中から経済性等を勘案して数種の配 合を選定し,それらに対して浸透実験を行った.浸透実 験結果の一例は,Fig.7に示すとおりである.さらに, 泥水の泥膜形成の優劣については,間隙水圧計と逸水量 の挙動から判断することにした.すなわち,Fig.7に示 すとおり地盤からの逸水量は少なく,その増加量は1分 後にはほとんどゼロとなり,地盤中の間隙水圧はあるピ ーク値をとり時間とともに消散していることが推測でき る.このことから,良好な泥膜が形成されているものと 判断し,実地盤への適用性が確認された.

Fig.6 浸透実験フロー

3-5 施工中の泥水管理

施工中の泥水管理では、泥水特性試験項目のうち比重、 ファンネル粘性および濾過水量について実施した. 試験 は掘削開始前と掘削終了時の1リングにつき2回行い、 その結果を記録するとともに、基準値を逸脱しないよう に泥水特性の管理がなされた. なお、1リング掘削後は 地山の細粒分の混入や比重の増加によりベントナイト濃 度が下がり、濾過水量が増大する傾向が常にみられたが、 ベントナイトや CMC の添加により改善を行い次リン グの掘削に備えた. しかし、希釈水や作泥水にフィルタ ープレスからの二次処理水も使用していたために、凝集 剤 (PAC) 中の陽イオン (Al³⁺)が残留して、泥水中の ベントナイト粒子が凝集し濾過水量が増大することがあ った. これについては、凝集剤添加量を再検討するなど の対処も試みたが、今後の課題として残された.

§4. 計測施工による掘進管理

シールド終端部の土被りの浅い箇所に存在する空港構 造物への影響を最小限に抑える目的で,計測施工管理を 実施した.すなわち,管理基準(地表面沈下で10mm以下) 内に地盤変状を抑制するため,各計測点毎に計測結果の 分析およびトライアル掘削を行った.

4-1 計測施工管理の手順

(1) 事前検討

FEM を用いて地盤の変状解析および近接構造物の安 定解析を実施した。

(2) 事前計測

 B_{E} , C_{E} および E_{E} 地点でのトライアル計測,並びに A_{E} , D_{E} および F_{E} 地点での確認のための計測を行った. (3) シールド掘進方法の検討

計測結果を用いたフィードバック解析よりシールド掘 進方法の検討を実施した.

(4) 近接計測

最も注意を必要とする給油管横断部 G_e地点での沈下 量を計測した。

(5) 事後計測

後続の沈下等に関する長期安定性の検討を行った。

4-2 事前検討

本施工地盤でのシールド掘進に伴う沈下原因は、次の 2つの要素の影響が大きい.すなわち、

①切羽部での応力解放,

②テールボイド部での応力解放.

これらの解析をより厳密に行おうすれば、3次元変形解 析が必要であるが、実務上問題のない範囲で Fig. 8のフ ローチャートに示すような簡易な予測手法を用いて 解析を実施した¹⁾.この方法では、まず切羽部およびテー ルボイド部における応力解放率 α を FEM の軸対称モ デルを用いた遂次掘削解析によって求める.次に、応力 解放率 α を用いて、実地盤モデルを対象とした FEM 平 面2次元解析を行い、地盤変形の予測を行う.ここで、 応力解放率 α は次式で定義されている (Fig. 9 参照).

 $\alpha = (\sigma_1 - \sigma) / \sigma_1$

なお, σ」は掘進前の初期応力である.

解析では、切羽土圧とテールボイド長をパラメーター として解放率を算出した。その結果について、テールボ イド長(L)をシールド掘削径(D)によって無次元化し た(L/D)と応力解放率 α で整理したものが Fig. 10 である。主計測断面での予測沈下量については、Table 4 に示すとおりである。この解析結果を、切羽土圧の管理 と裏込め注入施工方法の検討に反映させた。

切羽

刘羽

1

奥込め材

4-3 計測結果および考察

(1) 泥水圧の影響

地盤沈下の誘因としては、設定泥水圧の大きさと泥水 圧の変動が考えられた. Fig. 11 はトライアル区間での 設定泥水圧と先行沈下量の関係を示したもので,設定泥 水圧が高いほど先行沈下量は小さくなっている。

また, Fig. 12 は泥水圧の変動と沈下量の関係を示し

ている. この時の設定泥水圧は、2.2kgf/cm²(0.216 MPa) であり、静水圧2.0kgf/cm²(0.196MPa) より0.2 kgf/cm²(0.02MPa)高くした.図より,設定値を中心に

Table 4 予測沈下量一覧(cm)

断面	位置	a= 1 素掘り	a=0.24 テールボイド 切羽100%	a=0.14 テールボイド 切羽50%	α=0.04 テールボイド のみ
Pa	地表面	8.37	2.01	1.17	2.01
DE	直上1 m	17.18	4.12	2.41	0.69
6-	地表面	11.02	2.64	1.54	0.44
CE	直上1 m	19.52	4.68	2.73	0.78
E n	地表面	11.29	2.71	1.59	0.45
LE	直上1 m	19.15	4.6	2.68	0.77
C	地表面	7.79	1.87	1.09	0.31
GE	直上1m	11.68	2.8	1.64	0.47

Fig.10 テールボイド長と応力解放率の関係図

*D=10.2m, L=0.5mとすると L/D=0.049上図より応力解放率αは

Fig.12 泥水圧の変動と沈下の関係(BE-2)

泥水圧が変動しており、その幅は±0.2kgf/cm^{(±0.02} MPa)程度である. さらに、矢印で示している部分にお いては、泥水圧の変動が大きく静水圧以下になっており、 沈下はこの時点で進行することが確認される. したがっ て、泥水圧の変動幅を極力小さくするように注意する必 要がある. なお、泥水圧の変動幅はシールドの構造、地 盤条件等により変化するものであるから、泥水圧が変動 しても静水圧を下まわらないように設定泥水圧を定める ことが極めて重要である.

(2) シールド通過中のピッチングの影響

シールド通過中の地盤変状の主な要因は、ピッチング である。地盤変状については、計画縦断勾配に対してシ ールド機自体が常に傾斜しているために生じる変状並び に掘進時のジャッキアップによりマシンテール部が一時 的に持ち上げられて生じる変状の2種類が考えられる。

Fig. 13 は、登り勾配の施工時に生じたピッチングの 経時変化と、シールド直上 1 m 地点および地表面での沈 下量を併せて示したものである。全区間において、常に シールドの勾配がトンネル勾配より小さい状態で掘削し ているため(Fig. 14 参照)、シールド直上 1 m 地点では 掘進とともにシールドテール部直上の地盤が押し上げら

Fig.13 ピッチング量と地盤変位の経時変化(CE-2)

れ隆起傾向にあることが認められる。一方,テール部通 過後は沈下が出現している。

(3) テール通過時の裏込注入圧と沈下

Fig. 15 は、裏込注入圧と沈下との関係を示したもの である。本シールド工法では、即時裏込注入工が採用さ

Fig.14 ピッチングと地盤変位の関係

Fig.15 裏込注入継続時間と沈下の関係(BE区間)

IADIE 5 爭削上じM解你と美側値との」	との比較
------------------------	------

	事前FEM解析值(cm)			実測値(cm)		逆算α値		
	$\alpha = 1$	$\alpha = 0.24$	$\alpha = 0.14$	$\alpha = 0.04$	全体	初期沈下	全体	初期沈下
B _E 地表面	8.37	2.01	1.17	0.33	0.74	0.3	0.09	0.04
BE クラウン直上1m	17.18	4.12	2.41	0.69	0.90	0.4	0.05	0.02
C _E 地表面	11.02	2.64	1.54	0.44	0.51	0.2	0.05	0.02
C E クラウン直上1 m	19.52	4.68	2.73	0.78	0.57	0.3	0.03	0.02
E _E 地 表 面	11.29	2.71	1.59	0.45	0.02	0	0	0
E E クラウン直上1 m	19.15	4.60	2.68	0.77	-0.43	0	-0.02	0.
GE地表面	7.79	1.87	1.09	0.31	0.10	0.1	0.01	0.01
GE クラウン直上1 m	11.68	2.80	1.64	0.47	0.30	0.1	0.03	0.01

れたため、セグメントのグラウト注入口がシールドテー ルパッキンを通過するストローク50cmの所で注入圧が 上昇し、注入が開始されている.また、トライアル区間 において、掘進終了後の継続注入時間を0、5、10分と 3通り変化させた.その結果、5分以上の継続注入で沈 下量がほぼゼロになることがわかった.

(4) 泥水圧と過剰間隙水圧

泥水シールドにおいて, 掘削地盤の透水係数が小さい 場合, 泥水の浸透により切羽地盤の間隙水圧は地下水圧 より上昇(過剰間隙水圧が発生)し, 有効泥水圧(差圧– 過剰間隙水圧) が小さくなり, 切羽安定上問題になると 報告されている²⁾.

現場地盤の透水係数は10⁻⁴オーダーと小さく,過剰間 隙水圧の発生が予想された. Fig. 16 に B_Eおよび C_E断 面において発生した過剰間隙水圧と沈下との経時変化を 示している.これらの断面においては、過剰間隙水圧の 発生と沈下発生時期には相関があることが確認される. すなわち、有効泥水圧が小さくなったために、地盤変状 を誘発したものと考えられる.

(5) FEM 解析と実測値の比較

Table 5 に事前 FEM 解析と実測値の比較を示している。この表から、本施工では慎重な施工管理により応力解放率を0.01~0.05とすることが出来たと考えられる.

§5. おわりに

最小土被りが 7 m (0.7D), 掘進対象地山はマサ土, 一部分のクラウン上部に沖・洪積層が存在した今回の施 工から得られた留意事項並びに今後の課題についてまと めると次のとおりである。

(1) 希釈水および作泥水にフィルタープレスからの余剰 水を今回再利用してみたが,凝集剤 (PAC) 中の陽イオ ン (Al³⁺) の残留によって泥水濾過水量が増大した. 今 後は,凝集剤添加量の検討および泥水への陽イオン混入 対策を確立する必要がある.

(2) 泥水圧は、流体輸送の起動時等に生じる変動幅を考 慮し、少なくとも地下水圧を下まわらないように設定す る必要がある。今回の施工では、変動幅が±0.2kgf/cm⁷ (±0.02MPa) 程度であった。また、送泥の負荷が大き くなる到達部近傍では、泥水流動抵抗によって切羽圧調 整が一部不安定となる事例も発生した。したがって、泥 水輸送設備の再検討が必要である。

(3) 切羽面に比較的緩い地盤 (N 値30以下) が出現して も、泥水圧、裏込注入圧の適切な管理がなされれば、硬 質のマサ土地盤より予測した応力解放率 α を小さくす ることが可能となった.

最後に、当工事に際し、ご指導を項いた関係各位に感 謝する次第であります。

参考文献

1)橋本他;シールド掘進条件を考慮した地盤変形解 析,土木学会第43回年次学術講演会概要集,第III部門, pp.38~39,1988.

2) 森他;泥水式シールドによる砂質切羽地盤の間隙水 圧とその発生メカニズム,土木学会論文集, No430/III -15, pp.115-124, 1991,