直交ばりが載荷された弱パネルH形鋼骨組の弾塑性変形性状

Elastoplastic Deformation Behavior of Wide Flange Steel Frame Including Weak Joint Panel with Perpendicular Beams on Which Constant Vertical Load are Applied.

> 長谷部 廣行* 阿世賀 宏** Hiroyuki Hasebe Hiroshi Asega

要 約

本研究は載荷された直交ばりを有する弱パネルH形鋼骨組の繰り返し載荷実験を行い, 骨組の弾塑性変形性状を検討したものである.実験変数は骨組の崩壊モードに関係するパ ネル部材降伏比αの値を3種類(0.2, 0.4, 0.6) と,比較のため直交ばりが無載荷のもの, 直交ばりの有無である.はりフランジ幅厚比が15で薄肉にもかかわらず,αの値が 0.2, 0.4 のパネル崩壊型では、0.6 のはり崩壊型に比べ大変形域まで復元力特性は安定し、直交 ばり載荷の影響はあまり認められなかった.α = 0.2のパネル崩壊型ではパネルが降伏し た後ダイヤフラムが曲げ抵抗し、さらに直交ばりもそりねじれ抵抗することで、これらが パネル降伏後の耐力上昇に寄与することがわかった.さらにパネル崩壊型骨組の無次元エ ネルギー吸収量は、α=0.6 のはり崩壊型のそれと比べて非常に大きいこと、またパネル 崩壊型、はり崩壊型いずれも骨組のエネルギー吸収能力に与える直交ばり載荷の影響は小 さいことなどが明らかとなった.

目 次

- §1. はじめに
- §2. 試験体概要と実験変数
- §3.実験装置と加力方法
- §4.荷重−変位関係
- §5. 無次元荷重-無次元累積変位関係
- §6. 座屈発生および破壊状況
- §7. パネル枠組のひずみ性状
- §8. 各構造要素の変形成分
- §9. エネルギー吸収量
- §10. パネルの応力上昇比と部材降伏比
- §11. まとめ

* 技術研究所構造研究課副課長

**技術研究所構造研究課長

§1. はじめに

本報告は柱はり接合部パネル(以下パネルという)に 溶接接合された直交ばりが一定鉛直荷重を受ける場合, 繰り返し荷重が作用した弱パネルH形鋼純鉄骨骨組の弾 塑性変形性状,エネルギー吸収能力などを実験的に検討 したものである.

§2.試験体概要と実験変数

試験体はH形鋼の柱に直交二方向にH形鋼はりを溶接 接合した部分骨組で,実験変数は,はりに対するパネル の相対強度(パネル部材降伏比 a¹¹)である.性状を比 較するため,直交ばりが無載荷の骨組,および直交ばり が無い骨組を用意し,これらを含めた試験体数は合計8

図-1 試験体形状·寸法

	A 1000 M				
素材	降伏応力度 ^{σy} tf/cm ²	降伏ひずみ ^{εy} ×10 ⁶	ヤング係数 <i>E*</i> ×10³tf/cm²	引張強度 ^{σ』} tf/cm²	伸び率 %
PL-16	2.767	2249	2.09	4.241	47
PL-12	3.178	2281	2.13	4.661	47
PL- 9	3.315	1741	2.22	4.653	42
PL- 6	3.303	1651	2.12	4.532	41

図-2 パネル周辺の溶接詳細

*	ヤ	ン	グ	係数	は降	伏応ナ	1度の)1/	/3で	計	算
---	---	---	---	----	----	-----	-----	-----	-----	---	---

表-2 試験体の実測寸法

設計 <i>a</i> 値	試験体名称	鉄骨部材の断面寸法 (公称値)	高さ <i>H</i> (mm)	幅 <i>B</i> (mm)	ウエブ <i>t</i> * (mm)	フランジ <i>tr</i> (mm)	パネル t (mm)	はり 1b1 (mm)	lt h <i>lb2</i> (mm)	柱 <i>lc1</i> (mm)	柱 <i>lc2</i> (mm)	計算値 (mm)	計算値 * <i>R</i> ,,
0.2	IIU-2-15-2-N	BH-350*350*9*16(柱) BH-400*350*9*12(はり)	349.1 398.3	350.8 350.6	8.9 8.8	15.4 11.6	8.8	2499	2499	1249	1250	0.181	0.237
0.2	IIU-2-15-2-P	BH-350 * 350 * 9 * 16(柱) BH-400 * 350 * 9 * 12(はり) BH-400 * 200 * 6 * 6(直交梁)	344.8 400.0 400.3	351.1 350.6 199.7	8.8 8.8 6.0	15.8 11.7 6.0	8.7	2493 1500	2496 1500	1248	1248	0.174	0.226
0.2	IIU-2-15-2-PL	BH-350 * 350 * 9 * 16(柱) BH-400 * 350 * 9 * 12(はり) BH-400 * 200 * 6 * 6(直交梁)	347.8 398.3 400.9	351.3 350.6 199.9	8.6 8.7 6.0	15.4 11.6 6.0	8.7	2499 1500	2500 1500	1249	1247	0.178	0.230
0.4	IIU-4-15-2-N	BH-300*300*9*12(柱) BH-400*180*9*6(はり)	299.4 400.6	300.0 180.0	8.5 8.4	11.5 6.0	8.5	2500	2500	1248	1248	0.385	0.545
0.4	IIU-4-15-2-Pl	BH-300 * 300 * 9 * 12(柱) BH-400 * 180 * 9 * 6(はり) BH-400 * 200 * 6 * 6(直交梁)	299.7 401.7 400.7	300.3 180.2 200.0	8.6 8.7 6.0	11.6 6.0 6.0	8.4	2499 1500	2499 1500	1250	1251	0.369	0.524
0.6	IIU-6-15-2-N	BH-300*300*12*9 (柱) BH-400*180*6* 6 (はり)	300.2 402.0	300.5 180.3	11.4 6.1	8.4 6.0	11.6	2499	2494	1250	1251	0.559	0.761
0.6	IIU-6-15-2-P	BH-300 * 300 * 12 * 9(柱) BH-400 * 180 * 6 * 6(はり) BH-400 * 200 * 6 * 6(直交梁)	300.4 402.0 400.8	301.0 180.4 199.9	11.7 5.8 6.0	8.7 6.0 6.0	11.7	2500 1500	2499 1500	1249	1249	0.590	0.798
0.6	IIU-6-15-2-Pı	BH-300 * 300 * 12 * 9(柱) BH-400 * 180 * 6 * 6(はり) BH-400 * 200 * 6 * 6(直交楽)	300.9 400.6 399.8	299.8 180.3 199.6	11.8 6.0 6.0	8.7 6.0 6.0	11.6	2498 1500	2499 1500	1248	1249	0.579	0.786

 凡例:
 IIU-6-15-2-Pc
 2…
 2…
 社軸力比
 P/P₂ = 0.2) × 10

 II…繰り返し載荷
 N…

 面交ばり無し
 U…
 十字形試験体
 P…
 直交ばり有り(無載荷)
 6…パネル部材降伏比(α×10)
 Pい

 15…はりフランジ幅厚比

*:中尾博士の定義によるパネル降伏比

体である. 試験体の形状・寸法を図ー1に,パネル周辺 の溶接詳細を図ー2に示す. 図ー3は試験体と実験変数 との関係で, $\alpha = 0.2$, 0.4はパネル崩壊型, 0.6は,はり 崩壊型の試験体である. いずれの試験体もビルトアップ H形鋼を用いた柱貫通形式の骨組で,パネルの次に降伏 耐力が大きいはりはフランジ幅厚比を15とし,柱は骨組 の最大耐力時まで弾性となるよう設計した. 直交ばりの 断面サイズと部材長さは全試験体とも同じである. 表-1に使用したSS400鋼素材の機械的性質を,表-2に 試験体の実測寸法を示す. さらに,これら試験体の柱・ はりの断面性能を表-3,表-4に示す.

●:試験体(計8体)

図-3 試験体と実験変数

試験体名称	面積 (cm²) A	断面係数 ^(cm³) Z	断面2次M (cm ⁴) I	塑性断面係数 (cm ³) cZp	降伏曲/扩M (cm ²) cMy	全塑性M (tf・cm) <i>cMp</i>	降伏軸力 (tf) <i>P</i> y
IIU-2-15-2-N	136.4	1861.5	32492.1	2028.2	5150.7	5735.5	392.9
IIU-2-15-2-P	138.5	1873.5	32298.8	2040.9	5183.9	5765.4	398.4
IIU-2-15-2-PL	135.5	1851.2	32191.9	2014.3	5122.2	5692.1	389.8
IIU-4-15-2-N	92.5	1055.5	15801.2	1155.6	3354.5	3694.7	297.2
IIU-4-15-2-PL	93.4	1066.4	15979.5	1168.0	3388.9	3734.38	300.2
IIU-6-15-2-N	82.8	860.2	12911.7	965.5	2782.8	3090.3	263.2
IIU-6-15-2-P	85.5	889.1	13354.3	998.1	2947.4	3276.7	278.8
IIU-6-15-2-PL	85.6	889.2	13378.6	999.2	2947.8	3280.0	279.2

表-3 鉄骨柱の断面性能

表一4 鉄骨梁の断面性能

		-				
試験体名称	面積	断面係数	断面2次M	塑性断面係数	降伏曲 <i>时</i> M	全塑性M
	(cm²)	(cm ³)	(cm ⁴)	(cm ³⁾	(cm ²)	(tf・cm)
	A	乙	I	cZp	cMy	<i>cMp</i>
IIU-2-15-2-N	114.3	1721.7	34287.5	1882.2	5471.5	6024.1
IIU-2-15-2-P	115.2	1742.5	34850.7	1904.8	5537.8	6096.3
	47.3	611.7	12242.4	698.6	1983.6	2265.6
IIU-2-15-2-PL	114.0	1719.5	34243.5	1878.7	5646.5	6012.5
	47.3	613.3	12293.7	700.5	1989.0	2271.8
IIU-4-15-2-N	54.2	624.9	12516.7	743.23	2064.0	2458.9
IIU-4-15-2-PL	55.5	633.8	12710.6	756.5	2093.4	2502.6
	47.3	613.1	12284.4	700.3	1988.4	2271.0
IIU-6-15-2-N	45.4	572.1	11498.2	660.3	1889.5	2153.1
IIU-6-15-2-P	44.3	564.9	11354.6	649.2	1865.9	2117.5
	47.3	613.1	12286.7	700.3	1988.3	2271.0
IIU-6-15-2-PL	45.0	567.0	11357.1	653.4	1872.8	2130.8
	47.2	610.4	12202.9	697.2	1979.7	2261.0

§3.実験装置と加力方法

本実験に使用した加力装置は既報の²⁾のものと同じで ある(ここでは割愛).試験体の加力では、まず柱に降伏 軸力の20%の圧縮力を作用し、次に公称降伏点下値によ る直交ばりの降伏モーメントに相当する荷重を直交ばり 両端へ加えた後、これらを一定に保持した状態で変位制 御による定変位2回漸増繰り返し荷重をパネル構面内の はり両端に加えた(図-1).試験体やパネルの変形等は、 柱上下端のピン位置に取り付けたゲージホルダーに変位 計をセットして計測している.

§4.荷重一変位関係

図ー4に,はり両端荷重の平均値Hとはり端平均変位 ∂との関係を示す.図中の一点鎖線はパネルを剛接点と した線材モデルによる弾性剛性計算値,破線はパネル降 伏荷重の計算値,▼max は最大耐力点を表す.

α=0.2, 0.4のパネル崩壊型では大変形域まで繰り返

し荷重-変位関係が安定している. 直交ばりのない α = 0.2 の試験体では最大耐力時の変位量が他の試験体と比 べてやや小さくその後耐力低下が認められるが、これは パネル板にせん断座屈が発生したためである。 $\alpha = 0.6$ のはり崩壊型では最大耐力に達した後の繰り返し載荷に より耐力が急激に低下している. これははりフランジと ウェブに局部座屈が発生したことと、はりフランジ溶接 部にクラックが生じたことによる. αの値がいずれの場 合も直交ばりが有る場合は、 無い場合に比べて降伏耐力 および最大耐力が上昇している. これはパネルのせん断 変形に伴い直交ばりがねじれ抵抗することと、直交ばり のウェブがパネル板へ座屈補剛するためである. 直交ば りが載荷された試験体では、無載荷のものに比較して最 大耐力H_{max}がわずかに大きくなっている(表-5)が, これは直交ばりの上側フランジに載せたロードセルに載 荷したPC鋼棒が、直交ばりのねじれに対して拘束を与 えたためと思われる。このように直交ばりへの載荷・無 載荷が復元力特性に与える影響はほとんどないと言えよ う.

図-4 H-δ関係

表-5 実験結果と崩壊形状

試験体名称	計算值 <i>a</i>	計算值 <i>Rpy*</i>	骨 組 <i>Hy</i> (tf)	骨 組 Hmax (tf)	骨 組 <i>るy</i> (mm)	骨 組 <i>る max</i> (mm)	骨 組 <i>(Σδ)max</i> (mm)	パネル <i>γ max</i>	パネル <i>r max</i> (tf/cm2)	累積エネルギーE Σ ($H \cdot \delta$) (tf/cm)**	Е/Ну- д у	最終崩壊型
IIU-2-15-2-N	0.181	0.237	3.969	-9.197	10.639	-80.665	963.393	0.0378	-80.665	1263.000	299.104	パネル座屈
IIU-2-15-2-P	0.174	0.226	3.837	-10.667	10.686	-177.150	1670.553	0.0814	-177.150	2527.220	616.363	パネル崩壊,梁溶接部切断
IIU-2-15-2-PL	0.178	0.230	4.339	10.718	11.391	1622.044	1622.044	0.0951	1622.044	2424.190	490.473	バネル崩壊
IIU-4-15-2-N	0.385	0.545	4.184	7.500	18.600	1099.783	1099.483	0.0420	1099.783	1215.150	156.144	パネル座屈,梁座屈
IIU-4-15-2-PL	0.369	0.524	4.096	7.796	17.637	1096.122	1096.122	0.0483	1096.122	1261.770	174.661	梁座屈,溶接部切断
IIU-6-15-2-N	0.559	0.761	4.389	-8.739	21.173	938.578	938.578	0.0537	938.578	1111.830	119.643	梁崩壊(フランジ,ウエッブ座屈)
IIU-6-15-2-P	0.590	0.798	4.861	-8.815	22.086	611.053	611.053	0.0313	611.053	753.216	70.158	梁崩壊(フランジ,ウエッブ座屈)
IIU-6-15-2-PL	0.579	0.786	5.264	9.208	21.725	758.333	758.333	0.0581	758.333	934.178	81.687	梁崩壊(フランジ,ウエッブ座屈)

*:中尾博士の定義によるパネル降伏比

^{}**Σ(H・δ)はHmaxまでの累積値

§5. 無次元荷重一無次元累積変位関係

図ー5には無次元荷重H/H_y-無次元累積変位 Σ ∂1∂_y の関係を示す.ここに, H_yは骨組剛性が初期弾性剛性の 1/3 に低下した荷重(降伏荷重), ∂_yはH_yに対応する実験 曲線上の変位である.H_y以降の耐力上昇, 塑性率は, 直 交ばりへ載荷した試験体の方が無載荷のものよりいずれ も小さくなっている.これは, A直交ばりに載荷すると 直交ばりフランジが接合されたダイアフラムが二軸応力 状態となり, ダイアフラムの塑性化がはやまるため, パ ネル板降伏後のいわゆる枠組効果が小さくなるためであ ろう.

§6. 座屈発生および破壊状況

パネルのせん断座屈は、直交ばりの無い $\alpha = 0.2$ の場 合および $\alpha = 0.4$ のパネル崩壊型では5~7サイクル ($\delta = 90 \sim 135$ mm,換算柱部材角 $R = 1/28 \sim 1/19$)で生 じたが、その他の試験体では直交ばりのウェブが座屈補 剛をするため、あるいははりフランジの局部座屈が先行 するため生じなかった.一方、はりフランジの局部座屈 は、 $\alpha = 0.4$ 、0.6のすべての試験体で認められた.すべ ての試験体において、5サイクル以降($\delta > 85$ mm, R >1/30)で、はりフランジ溶接部にクラックが発生したが、 $\alpha = 0.2$ 、0.4の試験体ではクラック発生後も荷重一変位

関係は安定していた.全試験体の実験結果,破壊状況を 表-5にまとめて示す.

§7.パネル枠組のひずみ性状

図ー 6および図ー 7は、それぞれ直交ばりが載荷され た $\alpha = 0.2$ のパネル崩壊型、 $\alpha = 0.6$ のはり崩壊型の荷重 Hとダイアフラムのひずみ ϵ との関係である. はり崩壊 型では繰り返し載荷に伴うひずみ振幅は小さいのに対し、 パネル崩壊型では極めて大きく十分塑性化している. こ れはパネル板が降伏した後ダイアフラム板が曲げ変形す るためで、降伏後の耐力上昇にこれが寄与していること を意味する.

§8. 各構造要素の変形成分

図-8は、直交ばりが載荷された試験体の、各サイク ル時におけるパネル、はり、柱の変形成分(%)である. 骨組全変形量に対するパネルの変形成分はおよそ、パネ ル崩壊型($\alpha = 0.2$, 0.4)では70~90%,はり崩壊型 ($\alpha = 0.6$)では60%であった。これらの値は直交ばり無 し、あるいは無載荷の直交ばり有りの場合もほぼ同じで あった。

§9. エネルギー吸収量

無次元エネルギー吸収量 $E/H_{,\delta}$ 、を図一 9に示す. α の値が小さいほど無次元エネルギー吸収量は大きい. 直 交ばりがある場合は載荷・無載荷いずれも, 直交ばりが 無い場合に比べて, パネル崩壊型($\alpha = 0.2$) では大き く, はり崩壊型($\alpha = 0.6$) では逆に小さい. パネル崩 壊型では直交ばりの座屈補剛とねじれ抵抗によって適度 に補剛, 補強するためである³⁾. 直交ばりへの載荷の影 響は, パネル崩壊型で無次元エネルギー吸収量が若干小 さくなっているが, はり崩壊型に比較すればいずれもか なり大きな吸収量を保持している.

§10. パネルの応力上昇比と 部材降伏比との関係

図-10はパネルの応力上昇比 r_{max}/pr_y とパネル部材 降伏比 α との関係を示したものである.ここに、縦軸の r_{max} は最大耐力 H_{max} の時のパネル内の平均せん断応力 度、 pr_y は柱軸力を考慮したパネル板素材の降伏せん断 応力度で、横軸の α は実測断面寸法や鋼素材の降伏応力 度を用いた計算値である.図中には、既往の純鉄骨はり

ト字型試験体の単調載荷実験結果³¹ と合成ばりの十字型 試験体の繰り返し載荷実験結果⁴¹ をも併記してある.本 実験結果は既往の結果と同様に、 α の値が小さくなるほ $\mathcal{E}_{\tau_{max}}/p_{\tau_y}$ の値は大きく、同じ α の値では、本実験結 果の方がト字型骨組の結果よりも大きい.これは十字型 骨組(内柱部)はト字型骨組(外柱部)よりはりが一本 分多いため、その分パネル変形に対し、はりフランジや ウェブの拘束力が大きくはたらくためである.

§11. まとめ

パネル部材降伏比 a を実験変数として,載荷された直 交ばりを有する弱パネルH形鋼部分骨組の繰り返し載荷 実験を行い,弾塑性変形性状を検討した.得られた結論 をまとめると以下のよう、である.

- (1)実質のα値が0.39以下のパネル崩壊型では、はり フランジ幅厚比が15と薄肉であるにもかかわらず、荷 重-変位関係は大変形域まで安定していた。
- (2)パネル崩壊型では繰り返し荷重下でも直交ばりが 骨組の耐力や変形能力の向上に貢献した.
- (3) 骨組の弾塑性変形性状に与える直交ばりへ載荷の 影響は,パネル崩壊型,はり崩壊型骨組いずれも小さ かった.

なお本研究を行うに際しては, 熊本工業大学助教授, 河野昭雄先生に貴重なるご指導ご助言を賜りました.こ こに深く感謝の意を表します.

参考文献

- 1)河野昭雄,牧野稔:中低層鋼骨組の耐震性に与える柱 ーはり接合部のせん断補強の効果について,その1. 崩壊荷重係数と等価吸収エネルギー,日本建築学会論 文報告集,No.319号,pp.11~22,1982.
- 2)河野昭雄,阿世賀宏,長谷部廣行:異なる崩壊モードにおける合成ばり付き弱パネルH形鋼骨組の塑性変形能力に関する実験的研究,日本建築学会構造系論文報告集,No.452号,pp.109~119,1993.
- 3)河野昭雄:接合部パネルの力学的構成が鋼骨組の耐震 性能に与える影響についてーパネル崩壊型H形鋼ラー メン骨組の耐力・変形性状に関する実験的研究-,日 本建築学会構\造系論文報告集, No.435号, pp.151~ 163, 1992.
- 4)河野昭雄,阿世賀宏,長谷部廣行:合成ばりを有する 弱パネルH形鋼骨組の塑性変形挙動,日本建築学会中 国・九州支部研究報告,第9号,pp.401~404,1993.