# 地震波を用いた切羽前方探査の層状地山への適用性評価 Evaluation of Seismic Survey ahead of Tunnel Face in Plane Bedded Sedimentary Rocks

明石健\*石山 宏二\*\*Takeshi AkashiKoji Ishiyama平野享\*\*稲葉 力\*\*Toru HiranoTsutomu Inaba稲永浩一\*\*\*木村 雅哉\*\*\*Koichi InenagaMasaya Kimura

要 約

層状地山の山岳トンネルにおいて、地震波を用いた切羽前方探査を行い、探査後に行った 地質調査結果との対比から探査の適用性を検討した、探査にはTSP法を用いた。

今回,適用実験を行ったトンネルは和歌山県南部の朝来トンネルであり、地山は砂岩と泥 岩の互層よりなるいわゆる層状地山である。岩種間の強度のコントラストが大きく、地質 的に著しい異方性を有するという特徴を持つ。このような地山の特徴を考慮した解析を行っ たところ、得られた反射面の密集部分は、地山の脆弱部となりうる地層の擾乱部と層間の低 強度泥岩部に比較的良く一致した。これにより層状地山におけるTSP探査において、より 確実な地質推定を行える可能性を提言することができる。

目 次

- §1. はじめに
- §2.トンネルの施工概要
- §3.トンネルの地質概要
- §4. TSP探查·解析方法
- §5.探査区間の地質
- §6. 探査結果と地質との対比
- §7. 探査結果の評価
- §8. おわりに

\*技術研究所地質研究課

\*\*技術研究所土木技術課

\*\*\*関西(支)朝来(出)

### § 1. はじめに

地震波探査のうちTSP法<sup>11</sup>(Tunnel Seismic Prediction)を利用した切羽前方探査法が、近年盛んに利用され るようになってきている、TSP探査は、計測作業及び 解析を比較的短時間で行うことができるため、施工への 影響が小さく、かつ即座に結果を施工へ反映させること ができるという利点を持つ、

TSP探査の実施例については、これまで幾つかの報告<sup>2) ~7)</sup>がある.掘削実績との比較から、その探査能力 を有効であるとしているものが多く、施工への具体的な 反映事例を報告しているものもある.しかし、TSPで 得られる切羽前方の地山物性の変化帯(地震波の反射面) が、地質的にみて具体的に何を表すのかという検討は十 分とは言えない、より適切な地質推定を行うためにも、詳 細な地質データとの対比検討事例を積み重ねる必要があ る、

今回,層状地山の山岳トンネルで、TSP探査及び探 査後の坑内地質調査を行う機会を得,探査結果と地質と の関係から,層状地山におけるTSP探査についての評 価を行った.探査は合計3回行ったが、ここでは、対比 させる地質データの質がよい2ケースについて紹介する. そのうちの1ケースは約100mの水平コアボーリングとの 対比(探査区間A)で,もう1ケースはトンネル切羽の 地質観察による地質図との対比(探査区間B)である.

### §2. トンネルの施工概要

適用実験は和歌山県南部の朝来トンネルで行った.本 トンネルは日置川町〜すさみ町間に建設される延長918m の2車線の国道トンネルで,既存の道路の線形を改善す る目的で計画された.トンネルはNATMによって施工 され、掘削はミニベンチの発破工法である.トンネルの 地質縦断図と設計支保パターンを図ー1に示す.

掘削はすさみ方からの片押しで計画されていたが、土 地収用問題から一時期日置川方からの掘削となった、問 題解決後は再びすさみ側からの掘削となっている、探査 Aは日置川側切羽からの探査で、探査Bは掘削再開後の すさみ側からの探査である。

# §3. トンネルの地質概要

本地域の周辺の地質は砂岩と泥岩の互層よりなる層状 の堆積岩である。これらの地層は四万十帯に属する牟婁 層群として定義されており、形成時代は第三紀始新世~ 中新世と考えられている。

トンネル施工区間については、一般に砂岩が卓越して いる区間が多いが、砂岩中に泥岩の薄層が挟在している 状態が普通に観察され、剥離しやすい層理面を形成して いることが多い、坑内で観察される地質状況の一例とし て、砂岩卓越部の切羽観察図の例を図-2に示す、この





図ー1 トンネル地質縦断図と設計支保パターン



図-3 TSP探査の概念図



**図ー4** TSP解析フロー

切羽では左上から右下へほぼ平行に層理面が発達してい るのが読み取れる。層理面間隔は数cm~2mで、特に泥 岩薄層を挟在する場合は顕著な岩盤不連続面となってい る、

岩の一軸圧縮強度については、砂岩125MPa(13供試体の平均)、泥岩29MPa(10供試体の平均)で、岩種による強度のコントラストが大きいことがわかる。それはトンネル支保パターンにも反映され、岩種とトンネルの地山区分の関係については、一般に砂岩卓越部ではCI ~CII区分であるのに対し、泥岩卓越部ではDI区分にランク分けされている。

### §4. TSP探査・解析方法

探査に用いたTSP法は,多点発振1点受振系の地震 波を用いた切羽前方探査システムで,石油探査等に利用 されているVSP法をトンネルに応用させたものである。 トンネル坑内において小発破による地震波を発振させ,切 羽前方の地山物性の変化面からの反射波を捕らえ,その 位置を推定する。

探査の概念を図-3に示す.計測に際しては、60m程 の測線を、切羽手前のトンネル側壁に直線状に設ける. 小規模の探査用発破を測線上の30ヶ所の発振孔(L=1.5m) 内で行い、測線後方のセンサーで地震波を計測する.発 破には高性能爆薬と探鉱用電気雷管を用いる.センサー は1本のロッドにコンパクトにまとめられており、トン ネル軸方向と鉛直方向の2成分加速度計が3セット装着 されている.このセンサーロッドはゆるみ域の影響を低 減させるため受振孔(L=2.4m)に挿入して用いる.地山 との密着性を高めるために専用のガイドケーシングを用 い、ケーシングはモルタルにて地山に固着させる.

解析過程は図ー4のようになり、大きく2段階に分け ることができる。最初の波界処理過程は、記録波から直 接P波、直接S波、後方反射波、表面波等のノイズを除 去・低減させ、前方からの反射波のみを増幅・抽出する 過程である。またイベント抽出過程は、得られた反射波 についてマイグレーション処理を行った後、反射面の抽 出と、その3次元表示を行う過程である。

今回の探査・解析に当たっては、地山が層状であるこ

3

西松建設技報 VOL.19

とから,層理面からの反射が明確にとらえ得るものと考 えられた.またその状態が探査範囲全体にわたって連続 すると仮定できたことから,以下の点を考慮して探査・ 解析を行った.

- ・層理面からの反射を考慮して、探査測線を、反射波 をとらえうる方向のトンネル右壁に設定した。
- ・波界処理の反射波強調過程では、強調する反射波方 向を層理面の方向から決定した。
- ・抽出した反射面の3次元的な方向性を決定するに当 たっては層理面の方向を参考にした。

## §5. 探査区間の地質

### 5-1 探査区間A

探査区間Aについては、対比する地質データとしてボ ーリングコアデータ(L=102.2m)を用いた。得られたコ アの鑑定の結果を図-5に示す。探査時の切羽位置は STA.No.122+10.25mである。

全体的に見れば,岩相は砂岩優勢な砂岩泥岩互層である。砂岩はハンマー打で金属音を発するのに対して,泥

岩はハンマー軽打で容易に割れ,泥岩が卓越する部分は 低強度部となっている.

岩盤の亀裂の状態を評価するために、コアのRQDと S値についての検討を行った。S値とは復元可能なコア の積算長のことであり、日本の岩盤に適応しやすいとさ れるRQDの類似値である<sup>81</sup>.いずれの値も切羽からの 距離67~81m(区間②)での低下が顕著で、逆に81m以 降(区間③)はほぼ一定して値が高くなっている。

これらの結果から,既施工区間の実績も考慮して,表-1に示すように地山等級区分を行った.一方,より細く 区分した場合に,泥岩が卓越する部分は弱部であると認 識できることから,図-5に示したようにa~dの4箇 所の地山の弱部を抽出することができる.

### 5-2 探査区間B

探査区間Bについては掘削施工時の切羽観察をもとに トンネル地質図を作成した(図ー6). 探査時の切羽位置 はSTA.No.141+19.6mである.

全体的に見ると、岩相は砂岩が卓越する砂岩泥岩互層 であるが、詳細に見るとさらに細分化される、トンネル



図-5 ボーリングコア鑑定結果

| 区間       | 群! 離           | 树相             | RQD (%)              | S值 (%)                      | 地山区分              |
|----------|----------------|----------------|----------------------|-----------------------------|-------------------|
| 1,       | 0~67 <b>m</b>  | 砂岩優勢<br>互層     | 0~100. 平均42<br>大きく変動 | 45~100.平均87<br>しばしば50程度まで低下 | C II<br>(局部的にDI?) |
| <u>)</u> | 67~81 <b>m</b> | 泥岩・砂岩<br>(破砕部) | 0~59<br>平野22         | 8~89、平均57<br>大きく変動          | ÐI                |
| 3,       | 67~102m        | 砂岩             | 68~100<br>平円85       | 94~100. 平均98<br>ほぼ 定        | D I<br>(~B)       |

表-1 ボーリングコアから推定される地山区分(探査区間A)



5



図-7 TSP結果と地質との対比(探査区間A)

の地質は平板状の層理面をもつ地層からなる,いわゆる 整然層と、小褶曲や小断層によって地層が乱され、層理 面で区切られた岩塊がレンズ状になるなどの複雑な堆積 状況をなす、いわゆる擾乱層に分けることができる。こ の擾乱層が出現してくる区間は、地山の弱部として認識 することができる。本区分は、四万十帯牟婁層群に頻出 する、いわゆるスランプ構造<sup>91</sup>として区分できる可能性 があり、乱された形で堆積したものであることから断層 破砕帯とは区別される。

調査範囲には3箇所の地質不良部が認められる. 切羽 掘削に使用した爆薬の量は該当個所で減少しており、よ い対応関係が見られる. これらの箇所を含む範囲は、い ずれも支保パターンDIで施工されている. なお、湧水 に関しては範囲全体を等してほとんどなく、確認された ところでも滲水程度であった.

### §6. 探査結果と地質との対比

#### 6-1 探查区間A

TSP解析の結果と地質との対比を行った.トンネル センターラインにおける反射面の位置(計測時切羽から の距離)と地山の弱部との対応関係を図-7に示す.

反射面のうち94mのものを除けば、それぞれa, c, dの地山の弱部に重なっており、層間の低強度泥岩と破 砕部をよくとらえている。そのうちa, c区間について は反射面が密集している。なお、反射面を抽出できなか ったb区間は、他に比べて泥岩の割合が少なく、泥岩の 最大単層幅も小さい。

これよりTSPは、a~dとして区分した数m~十数 mオーダーの地山の弱部を、比較的よくとらえているこ とがわかる、しかし、数十mオーダーの区分となった地 山等級区分と比較した場合は適合性は認められず、今回 のケースでは、TSPの結果からその地質ユニットを推 定することは困難であると言わざるをえない。

#### 6-2 探査区間B

解析の結果,3~36mと62~82mに反射面の群を抽出 することができた(図-8).それぞれ、e(17~47m) の砂岩優勢擾乱層と、f(56~80m)の泥岩優勢擾乱層 に対応するものであるとみなせる.これらの区間では、い ずれも反射面は密集して抽出されている.しかし、地質 と一致しない反射面も認められ、3~13mの4つの反射面



図-8 TSP結果と地質との対比(探査区間B)

は、実際の地山弱部より手前に抽出されている。また、約100m以遠の弱部に対応する反射面は抽出されていない。

このように、e、fのような、20~30m程度の幅を持つ地山の弱部については、位置のずれはあるものの、抽 出反射面は比較的よく対応している。しかし、それ以上 のオーダーの区分となった施工時の地山区分との関係に ついては、探査Aと同様に、言及できるレベルにあると はいえない。

### §7. 探査結果の評価

### 7-1 層状地山に対するTSP解析

今回のケースでは、地質的にみた地山の弱部は、層間 の低強度泥岩と擾乱層の2つに大別することができる。 TSPの探査においては、地山の異方性を考慮し、層理 面を卓越反射面と仮定した解析を行うことによって、こ れらの地山の脆弱部からの反射が、比較的よくとらえら れていると解釈できる。

なお、試みとして、地山の異方性を全く考慮しない解 析を行った場合、地質との対応はよいものとは言えなか った.探査・解析に際しての既存の地質情報の重要性が 改めて認識されるという結果になった.

#### 7-2 地山脆弱部の評価

TSPによって得られる反射面は、反射波の性質から、 硬質から軟質な岩石への変化(硬→軟)と、軟質から硬 質への変化(軟→硬)のどちらかの性質を持つ.これか ら考えると、地山弱部は(硬→軟)と(軟→硬)の2つ の反射面で挟まれた区間となる.

しかし今回抽出された反射面は、必ずしもそのような 対を形成しているわけではない.また、地質対比の結果 からは、反射面の性質に関わらず、反射面が密集する部 分については地山の脆弱部と比較的よく対応しているこ とが明らかになった。特に3つ以上の反射面の集中を密 集部として認識した場合、例外はあるが、10m~30mの 区間オーダーの地山脆弱部を比較的よくとらえている。従 って、切羽前方の地質を推定する場合は、反射面の性質 にこだわらず、その密集部を地山の脆弱部として考える ことができる、その意味でTSPは地山の弱部の位置を 十分推定できるものと評価することができる。 TSPシステムは短時間で計測・解析を行うことがで き、施工への反映という点で非常に有利であり、一般に 比較的よく切羽前方の地質をとらえうると認識されてい る、しかし、岩種の違いに対する検討や湧水の影響など 課題も多く、そのため今後ともTSPの現場適用性につ いての検討を行っていく必要がある。

最後に、本適用実験を行うにあたり、本研究に御理解 を賜り、TSP探査と地質調査に際して多大な御協力を いただいた関西支店朝来出張所の皆様に改めて御礼を申 し上げる次第である.

#### 参考文献

- G.Sattel, P.Frey & R.Amberg : Prediction ahead of the tunnel face by seismic methods- pilot project in Centovalli Tunnel Locarno Switzerland, FIRST BREAK, Vol.10, pp.19~25., 1992.
- 2) 平野 享・明石 健・戸松征夫・中村康夫・芦田 譲: 弾性波を用いた既設水路トンネルの位置推定,第26回 岩盤力学に関するシンポジウム講演論文集,土木学会, pp.500~504,1995.
- 3) 佐藤愛光・明石 健・稲葉 力・石山宏二・平野 享:山 岳トンネルの切羽前方調査-電気比抵抗と弾性波探査

西松建設技報 VOL.19

によるー,第30回土質工学研究発表会講演論文集3分 冊の3,土質工学会,pp.2003~2004,1995.

- 4)明石 健・稲葉 力・石山宏二・平野 享・吉田道彦・福 山新二:電気比抵抗と弾性波を用いた山岳トンネルの 切羽前方探査,西松建設技報,18, pp.24~31,1995.
- 5)明石健・石山宏二・平野享・稲葉力・中村康夫:弾 性波を用いたトンネル切羽前方探査の層状地山への適 用,第50回年次学術講演会講演概要集第3部(A),土 木学会,pp.100~101,1995.
- 水上雅裕・林 堂信・戸松征夫・明石 健:TBMトン ネル掘削工事における切羽前方探査の解析事例:第50 回年次学術講演会講演概要集第3部(B),土木学会, pp. 1156~1157,1995.
- 7)山下雅之・平野 享・明石 健・石崎正剛・中村康夫: TSPシステムを用いた切羽前方探査の施工への反映、 第50回年次学術講演会講演概要集第6部,土木学会, pp.206~207,1995.
- 岩の調査と試験編集委員会:岩の調査と試験,土質工 学会, p.540, 1989.
- 9)紀州四万十帯団体研究グループ:紀伊半島南部海岸地域の牟婁層群の堆積学的・古生物学的研究ー紀伊半島四万十累帯の研究(その4)ー,和歌山大学教育学部紀要,自然科学,20,pp.75~102,1970