SMWの耐凍害性の検討および冬期施工時の壁体内温度履歴の測定 Frost Resistance and Curing Temperature in Wall at Cold Season Construction of Soil Mixing Wall

谷口 円 谷川 雅隆 Madoka Taniguchi Masataka Tanigawa

要 約

通常のコンクリート比べて水セメント比が高いSMWを寒冷期に施工する場合、その表面 が外気に曝されると、SMWの表面付近が凍害を受け、剥落などの問題の発生が懸念され る.本報では、SMWの凍害防止対策の基礎資料を得るため、凍結融解試験および現場での SMWの壁体内部の温度測定を行い、寒冷期におけるSMWの凍害調査を行った、凍結融解 試験の結果から、SMWは数回の凍結融解作用によって、ひび割れが生じるなど耐凍害性能 のあまり高くない材料であることが分かった。また、現場でのSMWの壁体内部の温度測定 結果から、直接外気に曝されるSMWの壁体表面付近は、外気温の影響を受け易いことが分 かった。

目 次

- §1. はじめに
- § 2. 工事概要
- §3. 凍結融解試験
- §4.SMWの壁体内部の温度測定
- §5. まとめ

§1. はじめに

ソイルミキシングウォール(以下,SMW)は,止水壁 と山止め壁等の性能を兼ね備えた地中壁であり,掘削土 とセメント系懸濁液を孔壁内で撹拌・混合して造成する. 一般に,一軸圧縮強度の目標値を10kgf/cm²(0.98MPa) 程度としているSMWは,通常のコンクリートと比較して 水セメント比が高い.そのため,寒冷期の地下掘削工事 では,SMWの壁体表面が外気に曝されると,凍害を受け 易く,壁体表面付近では剥落等の問題の発生が懸念され る.寒冷期にSMWを施工する場合,現場では,これらの 問題に対して,掘削直後にSMWの壁体表面を鉄板により 覆う等の対策を講じているのが現状である.このように SMWは,凍害を受け,止水性能や山止め性能等が損なわ れる恐れがあるにも係わらず,SMWの耐凍害性に関する 研究はこれまであまり行われておらず,また,それらに 関する資料も少ない.

そこで、SMWの凍害防止対策の基礎資料を得るため、 先ず、現場で採取したテストピースによる凍結融解試験 を行った、次に、寒冷期における実際の施工現場でSMW

^{*} 札幌(支)平岡(出)

^{**} 札幌(支)北電室蘭(出)

西松建設技報 VOL.20

の壁体内部の温度を測定し、SMWの冷却過程の温度履歴から、凍害の発生状況を調査した。

本報では、凍結融解試験結果および現場でのSMWの壁 体内部の温度測定結果について述べる。

§ 2. 工事概要

工事概要を表ー1に示す.また,SMWの施工状況を写 真ー1に示す.本工事で打設したSMWは,壁体深度が 14m,壁体厚さが0.45mである.

§3. 凍結融解試験

3-1 試験方法

凍結融解試験に用いた供試体の諸元を表-2に示す. 供試体は,打設時に採取したもの(以下,打設時サンプ

表一1 現場概要

工事名称	北海道電力(株)室蘭支店改築工事			
工事場所	北海道室蘭市寿町1丁目			
発注者	北海道電力 (株)			
1566 T	西松建設・黒光建設・岩倉建設・丸彦渡辺建設			
<i>//ख</i>	北海電気工事・テクセル共同企業体			
SMW施工業者	成幸工 業(株)			

写真ー1 SMWの施工状況

表-2 凍結融解試験に用いた供試体の諸元

	サンプル	養生時の条件		凍結融解試験時の条件		
名称	の	±+set	養生	試験前	試験中	
	採取方法	刘宸	期間	給水	封緘	水分供給
D-1	打設時	なし	1ヶ月	あり	<i>t</i> e 1	あり
C-1	っア坊キ	あり	3ヶ月	a) •	4	00.9
C-2	-/120	7 (0	0971	なし	あり	なし

ルと称す)と、打設後のSMWの壁体からコア抜きしたもの(以下、コア抜きサンプルと称す)の2種類である.打 設時サンプルは、 ϕ 5 cm×10 cmの型枠から採取したものであり、脱型後水分が蒸発しないように、濡れウエスをかけ、恒温恒湿状態(気温20℃、湿度95%)で1ヶ月間養生した.コア抜きサンプルは、SMWを施工してから1ヶ月後に、SMWの壁体から ϕ 5.2 cmの大きさでコア抜きしたものであり、水分が蒸発しないようにポリエチレンフィルムで封緘し、恒温恒湿状態で3ヶ月間養生した.

凍結融解試験は、ASTMの標準試験方法C666-B法の 気中凍結水中融解法¹⁾に準じて行った。打設時サンプル およびコア抜きサンプルとも、通常のコンクリート試験 の時と同様に24時間の給水後、封繊をしない状態で水分 を供給しながら凍結融解試験を行った(以下、この条件 での打設時サンプルを供試体D-1、コア抜きサンプルを 供試体C-1と称す)、また、コア抜きサンプルについて は、実際の現場の状態を考慮し、外部からの水分の供給 がない状態を再現するため、凍結融解試験前の給水を行 わずにポリエチレンフィルムで封繊し、水分を供給しな い状態での凍結融解試験も行った(以下、この条件での コア抜きサンプルを供試体C-2と称す).

凍結融解のサイクルは、周辺環境を一18℃に設定して 2時間凍結させ、5℃に設定して2時間融解させる、4 時間1サイクルで行った、測定は、凍結融解開始前と凍 結融解のサイクルが1、2、3、6サイクルの各サイク ル終了時に、各3本づつ、目視観察および一軸圧縮試験 を行った。

3-2 試験結果

凍結融解試験結果を表-3に示す.

(1)打設時サンプル

凍結融解試験開始前の平均圧縮強度は, 13.2kgf/cm² (1.29MPa) であった.

凍結融解試験の結果,供試体D-1は,1サイクル後に 全ての供試体にひび割れが発生した.ひび割れの発生状 況を**写真-2**に示す.このひび割れによって,供試体は 崩壊するだけの凍害劣化に至ったと判断し,一軸圧縮試 験は行わなかった.

表-3 凍結融解試験結果

名称	凍結融解の	平均圧縮強度	強度比	日祖知农
	サイクル数	(kgf/cm ²)	(%)	口优购荣
D-1	0	13.2	100	
	1	-		全供試体にひび割れ
C-1	0	26.1	100	
	1	-		全供試体にひび割れ
C-2	0	26.1	100	
	1	22.2	85	
	2	23.5	90	
	3	17.5	67	
	6	13.5	52	1本にひび割れ

写真-2 ひび割れ状況(供試体D-1)

写真-3 ひび割れ状況(供試体C-1)

(2) コア抜きサンプル

凍結融解試験開始前の平均圧縮強度は、26.1kgf/cm² (2.56MPa)であった.この値は、打設時サンプルのほぼ 2倍であり、供試体の養生条件の違いによる影響と考え られる。

凍結融解試験の結果,供試体C-1については,1サイ クル後に,全ての供試体にひび割れが発生した.ひび割 れの発生状況を**写真-3**に示す.このひび割れによって, 供試体は崩壊するだけの凍害劣化に至ったと判断し,一 軸圧縮試験は行わなかった. 供試体C-2については、6サイクル後に、3本の供試体中1本ににひび割れが発生した.ひび割れが発生していない供試体の圧縮試験結果を見ると、凍結融解サイクルが増加するに従って、平均圧縮強度は減少することが分かる。6サイクル後で13.5kgf/cm²(1.32MPa)であったが、凍結融解試験開始前と比較すると、その強度は50%程度に低下している。

以上のことから,SMWは,耐凍害性能のあまり高くない材料であることが分かった.

§4. SMWの壁体内部の温度測定

4-1 SMWの壁体内部の温度分布の数値計算

温度測定に先立ち、数値計算によるSMWの壁体内部の 温度分布を検討した。

(1)計算方法

計算は,以下に示すような一次元不定常熱伝導の数値 解法²⁾により行った.

図ー1に示すように,壁体を厚さ Δx (m)の薄層に分割し,任意の分割線上およびその両端の温度を,各々 θ_0 (\mathbb{C}), θ_1 (\mathbb{C}), θ_2 (\mathbb{C})とし, θ_0 (\mathbb{C})の面の任意の時間 Δ_t (sec)後の温度を $\theta_0 \Delta_t$ (\mathbb{C})とする.

一般に,一次元不定常熱伝導の微分方程式は,下式の ように仮定される.

$$\frac{\partial \theta}{\partial t} = a \frac{\partial^2 \theta}{\partial x^2} \tag{1}$$

ここで.

 θ : 温度 (°C) t : 時間 (h) x : 距離 (m) a : 温度伝導率 (m²/h)

である.

(1) 式を下式のような階差方程式に置き換える.

$$\frac{\Delta\theta}{\Delta t} = a \frac{\Delta^2 \theta}{\left(\Delta x\right)^2} \tag{2}$$

 Δt (sec)後の分割線上の温度 $\theta_{0\Delta t}$ は、(2)式を用いて、 下式のような近似式で表される。

$$\boldsymbol{\theta}_{0\Delta t} = \boldsymbol{p} \Big\{ \boldsymbol{\theta}_1 + \boldsymbol{\theta}_2 + \Big(\frac{1}{\boldsymbol{p}} - 2\Big) \boldsymbol{\theta}_0 \Big\}$$
(3)

ここで,

$$p = a \frac{\Delta t}{\left(\Delta x\right)^2} \tag{4}$$

(5)

ただし,

 $p \leq 0.5$

である.

計算条件を表-4に示す.なお,計算条件の中の外気 温は,室蘭の1月の日最低気温の平均値であり,地盤温 度は,室蘭の凍結深度以下の年平均地盤温度である. (2)計算結果

要因	条件		
外気温 (℃)	-4. 7		
SMWの壁体温度 (℃)	8.7		
地盤温度(℃)		8.7	
熱 伝達率 λ	SMW	1.30	
(kcal/mh [°] C)	±	0. 79	
温度伝導率 a	SMW	0.003	
(m²/h)	±	0.0013	
厚さ	SMW	450	
(mm)	±	5000	
Δt (hr.)	1.0		
Δx	SMW	100	
(mm)	±	500	

表-4 計算条件

計算結果を図ー2に示す.SMW壁体表面に着目する と,掘削によりSMW壁体表面が外気に曝され,SMW壁 体表面が0℃まで冷却されるまでの時間は約2時間であ る.また,SMW壁体と地山との境界面に着目すると, SMW壁体と地山との境界面が0℃まで冷却されるまでの 時間は約210時間であり,比較的長時間にわたって壁体内 部に温度勾配が生じることが分かった.

4-2 施工現場でのSMWの壁体内部の温度の測定(1)測定方法

工事および測定日程を表-5に示す、測定は、第二次 掘削の終了後、壁体表面を鉄板により覆った後に行った。 測定箇所を図-3および表-6に示す、平面的に見る

と、図-3に示すように、SMWの壁体だけの部分と、それと隣り合う壁体内のH型鋼部分の2箇所を1組とし、3 組6箇所で測定を行った(以下、各々の組を測定箇所A、 B、Cと称する)、高さ方向には、表-6に示すように GL-0.5m、GL-1.5m、GL-3.5mの3箇所で測定を行った、壁体内部の測定は、上述の測定箇所全てについて、 壁体表面から0 nm (SMWの壁体表面と外気との境界)、 50 nm、225 nm (SMWの壁体の中央)および450 nm (SMW の壁体と地山との境界)の4箇所とした、なお、外気温

日付	項目
1995年10月 8日	SMW打設開始
27日	〃打設終了
11月 18日	第一次掘削開始
30日	# 提削終了
12月 4日	第二次掘削開始
8日	温度測定開始
	(測定箇所の周辺の掘削は終了)
21日	第二次掘削終了
1996年 1月 10日	温度测定终了

表-6 温度測定箇所一覧

	深さ	温度計測箇所			
測定箇所	GL —	SMWのみ		H鉧+SMW	
	(mm)	表面	内部	表面	内部
A	500	0	0	0	—
	1500	0	0	0	0
	3500	—	—	-	-
В	500	0	0	0	0
	1500	0	0	0	0
	3500	0	0	0	0
С	500	0	0	—	0
	1500	0	0	0	0
	3500	-		—	_

注) 〇: 測定箇所

は, SMWの壁体上部のGL+1.2m程度の高さで測定した.

(2) 測定結果

以下では、SMWだけの部分についてのみ考察する.各 測定点の測定期間中の平均温度の変化を図ー4に示す. 各図から、地表面からの距離が増すに従って、平均温度 が高くなっている.また、外気と接している壁体表面か らの距離が増すに従って、平均温度が高くなっている. これらは、地表面や壁体表面からの距離が増すに従って、 外気の影響が少なくなり、かつ周辺の熱容量が増加する ためと考えられる.

外気温が氷点下のデータだけを抽出し、壁体温度 θ_{IN} と 外気温 θ_{OUT} との温度差 $\theta_{IN} - \theta_{OUT}$ の平均値の変化を図ー **5**に示す。各図から、平均温度の場合と同様に、地表面 からの距離が増すに従って温度差が高くなっている。ま た、外気と接している壁体表面からの距離が増すに従っ

て温度差が高くなっている。外気と直接接している壁体 表面からの距離が0㎜のところに注目すると、温度差は 0℃に近い。これより、外気に直接曝されるSMWの壁体 表面付近は、外気温の影響を受け易いことが分かった。

§5. まとめ

凍結融解試験結果および現場でのSMWの壁体内部の温 度測定結果をまとめると以下のとおりである。

- ①水分の供給を行いながら凍結融解試験を行った供試体は、凍結融解サイクルが1サイクル後に、全ての供試体にひび割れが発生した。
- ②水分の供給を行わずに凍結融解試験を行った供試体は, 凍結融解サイクルが6サイクル後に,3本の供試体中 1本にひび割れが発生した.また,一軸圧縮試験結果 を見ると13.5kgf/cm²(1.32MPa)と,凍結融解試験 開始前の約50%に強度が低下した.
- ③現場でのSMWの壁体内部の温度の測定の結果,平均温 度,外気との温度差とも,地表面からの距離が増すに 従ってその値が高くなった.

図ー4 地表面からの距離と平均温度の関係

④外気と接している壁体表面からの距離が増すに従って その値が高くなった。

今後は、これらの知見を踏まえて、SMWの耐凍害性を 向上させることが重要である。このため、材料面からは、 セメント系懸濁液の最適調合の検討および新しい混和剤 の開発等を行う予定である。また、施工面からは、SMW の壁体表面の養生方法等の検討を行う予定である。

最後に,北海道電力(株)室蘭支店建築サービスセン ター所長 福沢清治氏,同担当技官 長谷敏昭氏,北海 道大学教授 鎌田英治氏ならびに同助手 浜幸雄氏には, 今回の実験を行うにあたり,御指導,御協力を賜りました.ここに記して,深く感謝いたします.

参考文献

- Annual Book of ASTM Standards, Sec.4, Vol.0402 : American Society for Testing and Materials, pp.406-413, 1986.
- 2) 建築学大系 第8卷: 彰国社, pp.313-315, 1969.