最終処分場しゃ水機能管理システム(s-Can:エス-キャン)の開発 Development of a Leak Detection System (s-Can) in Final-disposal-site of Solid Wastes

金丸信一*田中勉**Shinichi KanemaruTsutomu Tanaka平岡博明***宮崎啓一***Hiroaki HiraokaKeiichi Miyazaki萩谷宏三**Kozo Hagiya

要 約

最近の環境問題に関する関心の高まりとともに,循環型社会の構築をめざす動きが出てきている が,現状では産業廃棄物の最終処分場の必要性はまだまだ大きい.最終処分場においては,しゃ水 工が長期にわたってその機能を維持していることが必要であり,それを監視するとともにその機能 が損傷を受けた場合には補修のためにその位置を特定することが必要となる.しゃ水機能管理シス テム『s-Can』は,しゃ水シートの絶縁性を利用した点電極一電流法に基づく電気的手法を用いた 監視システムであり,損傷箇所の特定が短時間で可能であるとともに,廃棄物層および基礎地盤の比抵 抗分布の影響が小さく,周辺施設等からの電気的ノイズによる影響を受けにくいという特徴がある.

数値解析および室内実験において、しゃ水シートの損傷の有無を検知することができ、電極間隔 の約1/6~1/10の精度で損傷位置を特定できることが分かった.本報では、同システムの紹介とと もに、解析結果、室内実験結果について報告する.

目 次

- §1. はじめに
- §2. s-Canシステムの概要
- §3. モデル計算
- §4. 模型実験
- §5. まとめ

§1. はじめに

最近の環境問題に関する関心の高まりとともに,循環 型社会の構築を目指す動きが出てきているが,現状では 産業廃棄物の最終処分場の必要性はまだまだ大きい.平 成7年度の厚生省の発表¹¹によると,産業廃棄物最終処 分場は,全国で2,361ヶ所(6年度は2,392ヶ所)あり,そ の残余容量は1億4,165万m³(6年度は1億5,091万m³),残 余年数は全国平均で8.5年(6年度は8.7年)と前年に比べ 減少している.特に首都圏においては,残余年数が4.8 年(6年度は5.2年)と厳しい状態にあり,最終処分場の 建設が急務となっている.

- ** 技術研究所技術研究部環境技術研究課
- ***技術研究所技術研究部土木技術研究課

最終処分場においては,処分場内の汚水が周辺地下水 中に浸出しないように、しゃ水工が長期にわたって十分 な機能を維持していることが必要であるとともに、それ を監視していかなければならない。管理型最終処分場の しゃ水工の構造として、平成10年6月に出された総理府 と厚生省による共同命令³⁾において,透水係数10^scm/s で層厚5mの粘土しゃ水層の機能を基準として、二重し ゃ水構造とすることが規定され、①しゃ水シート+土質 しゃ水層(厚さ50cm以上,透水係数1.0×10^scm/s以下), ②二重しゃ水シート,③しゃ水シート+アスファルトコン クリート(厚さ5cm以上,透水係数1.0×10⁷ cm/s以下)の 三つの構造が示された.しゃ水機能管理システム『s-Can:エスーキャン』(以後, s-Can)は、上記の二重し や水構造に対応したものであり、しゃ水シートの絶縁性 を利用した点電極―電流法に基づき電気的な手法によっ て、しゃ水シートの健全性を監視するものである.この システムは測定を短時間で行うことができ、検知電極位 置における電流強度の測定に基づいているため、廃棄物 層および地盤の比抵抗分布の影響を受け難く、また、周 辺施設等からの電気的ノイズに強いという特徴がある.

なお, s-Canは最終処分場においてしゃ水シートの損 傷時の補修を考慮したトータルシステムにおける要素技 術となるものである.

^{*} 横浜(支)道公富士宮(出)

§2. s-Canシステムの概要

s-Canは電気的絶縁体を間に挟んで電気回路を構成す ると,絶縁体の絶縁性が低下しない限りこの回路は形成 されないために電流は流れない(初期の過渡現象は考え られる)が,絶縁性が低下すると回路が形成され,電流 が流れることを利用している.

しゃ水シートと土質しゃ水層を組み合わせたしゃ水構 造に,s-Canを適用した場合を図-1に示す.この図で は土質しゃ水層下部に複数の検知電極を設置し,廃棄物 層内に内部電極を設けている.測定方法は,内部電極よ り電流を流し,各検知電極に流れた電流値を測定する. 一般的に使用されているHDPEやゴム製のしゃ水シート は電気的に絶縁体と考えられる²⁰.したがって,しゃ水 シートに損傷がなければ電気は流れないが,しゃ水シー トが何らかの原因で破損すると,損傷箇所を通って,内 部電極と検知電極を結合する電気回路が形成され電流が 流れる.電流は,抵抗が最も低い(つまり,損傷箇所に 最も近い)検知電極に多く流れ,損傷箇所から離れた検 知電極ほど流れ難くいため,内部電極から電流を流した ときに,各検知電極において測定した電流値の分布によ り損傷位置を特定することができる.

図-2に二重しゃ水シート構造に適用した場合の概念 図を示す.この場合には検知電極は二重のしゃ水シート の間に設置する.上部しゃ水シートの健全性は,廃棄物 層内の内部電極と検知電極により評価する.下部しゃ水 シートに関しては,最終処分場外部に設置した外部電極 と検知電極によって評価する.上下しゃ水シートが同時 に損傷した場合は,上部しゃ水シート,下部しゃ水シー トを交互に測定することにより損傷位置を特定すること が可能である.

§3. モデル計算

3-1 モデル計算方法

しゃ水シートと土質しゃ水層によるしゃ水構造におい て、s-Canによる漏水検知手法の可能性と検知分解能の 検討を目的として、擬似3次元有限要素法を用いたモデ ル計算を行った.計算モデルは基礎地盤上に厚さ50cm の土質しゃ水層があり、その表面に電気的に絶縁体であ るしゃ水シートがあるとして、しゃ水シートにピンホー ル状の破損があると仮定した.なお、ピンホールからの 漏洩電流値は1Aであるとした.基礎地盤および土質し ゃ水層が電気的に均質な場合と不均質な場合を想定し、 表-1に示した条件で計算を行った.

3-2 モデル計算結果

モデル計算では、隣接する0mおよび+5m位置にある

しゃ水シートと土質しゃ水層の組合せ構造

図ー2 二重しゃ水シート構造

表ー1 モデル計算ケース

	CASE1	CASE2
電極間隔	5 m	
電極設置位置	しゃ水シート下 50cm	
土質しゃ水層と基 礎地盤の比抵抗	50Ω·m (均質地盤)	25~100Ω·m (不均質地盤)

検知電極間でしゃ水シートの損傷位置を0m位置から1m ずつ5mまで移動させた場合に全検知電極で測定される 電流の分布を求めた. 図-3にCASE1, 図-4に CASE2のモデル計算結果を示す. 図中の○は0m地点, すなわち検知電極直上でしゃ水シートが損傷している場 合の電流分布を示している. □は, 0m地点にある検知 電極から1m離れた地点, △は2m離れた地点, ▽は3m離 れた地点, ◇は4m離れた地点でしゃ水シートの損傷が ある場合の電流分布を示している. +は5m地点, つま り隣接する検知電極直上に損傷位置がある場合の電流分 布を示している.

図-3を見ると,損傷位置が0m,1mおよび2mの場合 には0m位置の検知電極に流れる電流値にピークを持つ 電流分布を示しており,損傷位置が3m,4mおよび5mの 場合には5m位置の検知電極位置にピークが見られてい る.これらの2グループの電流分布形状は検知電極と損 傷位置との離れに応じて互いに対称的であることが分か る.また,損傷位置が検知電極の直上に当たる0m,5m 地点から離れるとともに,電流分布のピーク値が小さく なっており,ピーク値に関して左右の分布形状が非対称 となり,損傷位置が検知電極位置間にあることが推測で きる結果となっている.

図-4に基礎地盤および土質しゃ水工の比抵抗が不均 質な場合の結果を示す.損傷位置が検知電極直上位置 (0mおよび5m)の場合の分布形状は互いにほとんど対 称的である.また,図-3と同様に検知電極と損傷位置 との離れに応じた分布形状の特性が見られている.しか し,基礎地盤および土質しゃ水層の比抵抗が不均質であ るため,損傷位置と検知電極位置の離れが0m位置の検 知電極に近い1mおよび2mと,5m位置の検知電極に近い

図ー4 モデル計算結果-CASE2(不均質地盤)

3mおよび4mでの分布形のピーク強度が異なる結果となっている.

3-3 解析結果の検討

図-3および図-4に示した電流分布から,逆にしゃ 水シート損傷位置を推定するため、次式によって計算値 の最小二乗法によるフィッティングを行った.

$$G(x) = \frac{a}{\sqrt{b + (x - x_0)^2}}$$
 (1)

ここで、x:検知電極位置、 x_o :しゃ水シート損傷位置、G(x):検知電極に流れる電流値、a,b:定数である.

式(1)において, 極値を示すxの値が損傷位置を示すと 考えられ, しゃ水シート損傷位置を推定した結果を図ー 5に示す. 図中の数字は損傷位置の推定値を示している. 土質しゃ水層が均質な場合では, 電極間隔が5mに対し て約40cm以内の誤差でしゃ水シート損傷位置を検知す ることができる. また, 土質しゃ水層が不均質な場合で も,約50cm以内の誤差でしゃ水シート損傷位置が決定 できることが分かる.

したがって、モデル計算の結果からは、土質しゃ水層 および基礎地盤の比抵抗分布の不均一性(ばらつき)に よる検知電極での電流分布の変化は小さく、損傷位置の 推定結果に与える影響も小さいと考えられ、電極間隔の 約1/10の精度でしゃ水シートの損傷位置を特定できると 考えられる.

§4. 模型実験

4-1 概要

モデル計算の妥当性を検証するために模型実験を行った.実験は広さが3m×3mで高さが30cmの土槽を用いて, しゃ水シートと土質しゃ水層の組合せ構造および二重し ゃ水シート構造の2種類のしゃ水構造に対して行った. 計測用の検知電極は20cmピッチに格子状に100箇所に設 置して,同一損傷位置に対して全検知電極での電流値を 測定した.

図-6に、しゃ水シートと土質しゃ水層の組合せ構造 の場合における実験モデルを示す.山砂にNa型ベント ナイトを5%添加したベントナイト混合土(含水比18%) を15cmの厚さになるように締固めた後,検知電極を配 置し(写真-1),さらにその上に5cmの厚さになるよ うベントナイト混合土を締固めた.その上にしゃ水シー トとして厚さ1.0mmの軟質塩ビシートを設置し覆土し た.締固めに当たっては、ハンディタイプの比抵抗測定 器によって比抵抗を測定し、約16Ω・mになるようにし た.測定用の検知電極は圧着端子を加工したものを用いた.

図-6 しゃ水シートと土質しゃ水層の組合せ構造 の場合における実験モデル断面図

写真-1 しゃ水シートと土質しゃ水層の組合せ 構造実験の電極配置

二重しゃ水シート構造の場合には図-7に示すよう に、厚さ15cmに締固めたベントナイト混合土の上に、 しゃ水シート、不織布(厚さ10mmの反毛フェルト)の 順に敷き、その上に検知電極を配置した(写真-2). その上にさらに不織布、しゃ水シートの順に敷き、最後 に覆土した.不織布は抵抗値が大きいため、実験は不織 布に均一に水を散布して行った.

表-2に実験ケースを示す.しゃ水シートと土質しゃ 水層の組合せ構造の場合にはCASE1およびCASE2につ いて、二重しゃ水シートの場合CASE2およびCASE3に ついて実験を行った.

4-2 実験結果

しゃ水シートと土質しゃ水層の組合せ構造の実験にお いて、しゃ水シートに生じた穴の大きさが損傷検知能力 に及ぼす影響を検討した.実験(CASE1)では、ピンホ ール, φ1mm, φ5mm, φ10mm, φ30mmの穴をしゃ 水シートに設けて損傷の検知の可否を測定した。ピンホ ール, ø1mmおよび ø5mmの穴がしゃ水シートに開い ている場合には,検知電極では電流が測定されず穴が開 いていることを検知できなかった、これは、穴が小さい ことと、土質しゃ水層の含水比が小さいために余剰水分 が無く、しゃ水シートの上の覆土と土質しゃ水層が電気 的に接触していないため、内部電極と検知電極との間に 電気回路を構成できなかったことが原因と考えられる. 図-8は同様の条件で、ピンホール部に針を刺したまま で実験を行った結果である. ピンホール位置(80,100) に,明確なピークがみられ,穴の位置を特定できている ことが分かる.このことから,損傷箇所の穴の大きさが

図-7 二重しゃ水シートの場合における 実験モデル断面図

写真-2 二重しゃ水シート構造実験の電極配置

表ー2 実験ケース

CASE1	損傷部の穴の大きさの違いの検証
CASE2	損傷位置が一箇所の場合
CASE3	損傷位置が二箇所の場合

ピンホール大であっても,電気回路が形成されれば,つ まり最終処分場において,しゃ水シートから漏水が生じ ていれば,しゃ水シートの損傷位置を特定することが可 能であると考えられる.

図-8のように強制的に回路を形成させることなく, 穴のみが開いている状態での穴の大きさが ∳ 10mmの場 合の電流分布の測定結果を図-9に示す.損傷位置は

 図-9 しゃ水シート損傷が
 ↓ 10mmの場合 穴の位置x=80, y=100

(しゃ水シートと土質しゃ水層の組合せ)

図-10 しゃ水シート損傷位置が二箇所の場合 穴の位置x=80, y=100およびx=140, y=100 (しゃ水シートと土質しゃ水層の組合せ)

x=80, y=100であるが,損傷位置に明確にピークが出 ていることが分かる.損傷部の大きさが ∮ 30mmの場合 も, ∮ 10mmと同様の傾向が見えた.しかし,電流値に は大きな差異は見られなかった.このように穴の大きさ が異なっても流れる電流量がほとんど変わらないこと は,検出手法が電流分布を基本としていることから当然 の予想される結果であり,電流測定値から損傷の大きさ を推定することが困難であることが確認された.

しゃ水シートに ϕ 10mmの穴が二箇所ある場合の結果 を図-10示す.穴の位置はx=80, $y=100 \ge x=140$, y=100である.(80,100)位置での電流強度が(140, 100)位置の値よりも少し低いが、二箇所の損傷位置で 明確なピーク値を示し、損傷位置が二箇所であっても、 その位置を精度良く検出できることが分かる.

二重しゃ水シート構造の実験では,損傷穴の大きさは ¢10mmとした.図ー11に損傷が一箇所の場合を示した

が、しゃ水シートと土質しゃ水層の組合せ構造の場合と 比べると、損傷部近傍の検知電極へ電流の流れが集中す る傾向が顕著で、損傷位置で鮮明にピークが見られてい る.また、図-12に穴が二箇所ある場合の結果を示す. これも同様に、損傷位置で土質しゃ水層の場合よりも鮮 明にピークが見られている.

損傷位置が一箇所および二箇所ともに、しゃ水シート と土質しゃ水層の組合せ構造の場合より、損傷位置で明 瞭な電流強度のピーク見られているのは、電流回路を構 成する媒体の違いに起因するものであると考えられる. すなわち、土質しゃ水層の比抵抗は約16Ω・mであった のに対して、不織布層の比抵抗は、それよりも大きく約 120Ω・m程度であったので、二重シートにおける測定結 果では、しゃ水シート損傷箇所付近の検知電極へ電流が 集中して流れたと考えられる.

4-3 実験結果の検討

測定結果から、しゃ水シートの損傷箇所付近に電流強 度のピークが見られることが確認され、しゃ水シートと 土質しゃ水層の組合せ構造であっても、二重しゃ水シー ト構造の場合であっても、定性的にはs-Canシステムを 適用可能であることが分かった.

実験で得られたデータから逆にしゃ水シートの損傷位 置を推定するために、測定電流値に対して最小二乗法に よるフィッティングを行った. CASE2およびCASE3の 測定値にフィッティングを適用して. 損傷位置を推定し た結果を図ー13および表-3に示す. しゃ水シート損 傷位置の推定の誤差は、電極間隔20cmに対して、幾つ かのデータで約6cm程度の値を示すものがあるが、しゃ 水シートと土質しゃ水層の組合せ構造の場合で平均で 3.15cm、二重しゃ水シート構造の場合で2.99cmであっ た. すなわち、平均的には電極間隔の1/6程度の精度で しゃ水シートの損傷位置を特定できると考えられる. な お、損傷位置の推定については、近似関数の適切な選定 や測定データの適切な処理等によって改善できる可能性 がある.

模型実験においては、電極間隔が20cmと狭いため、 解析結果より誤差が大きくなったと考えられる.実際の 処分場での電極間隔は5~10m程度であることが多く、 電流経路の電気抵抗が大きくなるため、電流はしゃ水シ ート損傷位置に最も近い検知電極に流れる傾向が強ま り、より解析結果に近い推定精度が得られることが期待 できる.

表一3 フィッティング結果

	平均誤差(cm)
しゃ水シートと土質しゃ 水層の組合せ構造	3.15
二重しゃ水シート構造	2.99

§5. まとめ

本報告では、しゃ水機能管理システムについての有効 性について、解析と室内実験によって確認した結果につ いて報告した.

解析結果から本手法(点電極一電流法)が,最終処分 場におけるしゃ水シートの健全性を監視する手法として 十分適用可能であり,電極間隔の約1/10の精度でしゃ水 シートの損傷位置を推定できることが分かった.また, 模型実験での検証においては,損傷位置の推定精度が平 均値として電極間隔の約1/6程度であった.今後は,実 規模の実証実験を行い,システムの改良を進めていくと ともに,模型実験では最も条件の悪い状態での損傷位置 の推定精度が1/4程度となる可能性があったが,損傷位 置推定手法を改善を行っていく予定である.

最終処分場におけるしゃ水機能の健全性の管理はこの ようなシステムを設置することと、損傷等によりしゃ水 機能の低下が見られた場合の対応手法とが一体となって いることが必要である.修復手法として、初期の廃棄物 の埋め立て量が少ない状態では、損傷位置を特定して、 廃棄物を表面から直接に除去して修復することが可能で あり、最も確実性が高いと考えられる.しかし、埋め立 て量が多くなった状態での修復では除去量が多くなるた め、オールケーシング工法を用いた無人化工法で廃棄物 層を掘削・除去し、遠隔操作により損傷位置を修復する 方法を検討している.この方法では、遠隔操作で修復作 業を行うため、人が廃棄物層に入ることなく、衛生的か つ安全に作業を行うことができる.

しゃ水機能管理システム『s-Can』は、しゃ水工の施 工管理システムおよびしゃ水工の損傷修復システムとと もに最終処分場トータルシステムの要素技術の一つとし て開発を行っており、最終的には環境に対する影響の小 さな最終処分場システムを目指している。

謝辞

しゃ水機能管理システム「s-Can」は,基礎地盤コン サルタンツ株式会社との共同研究の成果である.システ ムの開発にあたり御協力していただいた基礎地盤コンサ ルタンツ株式会社の酒井幸雄氏,三木茂氏に感謝の意を 表します.

参考文献

1) www.nippo.co.jp/jwaste1.htm

- 2) 荒井 建 他:電気的漏水位置検知にしゃ水シートの電気特性が与える影響,土木学会論文集,No.630/ VI-44, pp.27-38
- 3)環境庁,厚生省:一般廃棄物の最終処分場及び産業 廃棄物の最終処分場に係る技術上の基準を定める命 令の運用に伴う留意事項について,都市と廃棄物, Vol.28.No.10, pp.67-79
- 4) 金丸 信一 他.: 電流法による最終処分場漏水検知手 法の確立,第35回地盤工学研究発表会,2000.