超高強度コンクリート(Fc=100N/mm²)を用いた超高層 RC プレ キャスト構法の開発(その2 柱部材および柱梁接合部実験) Development of Super High-rise Apartment by Precast Constrution Method Using 100N/mm² Strength Concrete (Part 2 Structural Tests)

高橋 孝二** 金川 Koji Takahashi Moto 西浦 範昭** 宮下 Noriaki Nishiura Take 飯塚 信一** Shinichi Iizuka

金川 基** Motoi Kanagawa 宮下 剛士* Takeshi Miyashita

要 約

本論文は、高さ 200m、地上 60 階クラスの超高層 RC 造住宅プレキャスト構法の開発の一環で実施 された構造実験に関する報告である.建物の下層階に適用が想定される設計基準強度 Fc=100N/mm² の超高強度コンクリートおよび高強度鉄筋を使用した柱部材および柱梁接合部の静的加力実験を実施 した.柱部材の実験は、実大の約 1/3 の縮小モデルとし、せん断補強筋比をパラメータとする実験を おこなった.柱梁接合部の実験は、実大の約 1/2.5 の縮小モデルとし、低層部基準階を想定した十字 形およびト形のそれぞれの試験体に対し接合部と梁の耐力比をパラメータとする実験をおこなった. これらの実験により、超高強度コンクリート (Fc=100N/mm²) および高強度鉄筋を使用した柱部材 および柱梁接合部の履歴性状や耐力・変形性能が明らかになり、十分な耐震性能を有することが確認 できた.また、既往の設計式によって構造性能を評価できることを確認した.

目 次

- §1. はじめに
- § 2. 実験概要
- §3. 実験結果
- §4. 各設計式との比較
- § 5. おわりに

§1. はじめに

近年,都市部で建設されている鉄筋コンクリート造の 超高層住宅は50階を越え,更に60階クラスも数棟では あるが建設予定である.こうした建物の超高層化を可能 にした技術的背景には,旧建設省で推し進められた NewRC総プロ(昭和63年より5ヵ年,総合開発プロ ジェクト「鉄筋コンクリート造建物の超軽量・超高層化 技術の開発」)をはじめとする数々の研究成果であるこ とは言うまでもない.そして総プロ以降,コンクリート の高強度技術は更に進み,設計基準強度で100N/mm² クラスを使用する建物の建設が可能になっている.

しかし,こうした超高強度材料を用いた部材または架 構の力学性状の把握は、これまで養ってきた普通強度ク ラスの膨大な実験データに基づく知見に比べれば極めて 少なく、信頼性の高い耐震設計の向上のためには、なお 構造実験によるデータの蓄積が必要である.そこで本研 究では、建物の下層階に適用が想定される設計基準強度 Fc=100N/mm²の超高強度コンクリートおよび高強度 鉄筋を使用した柱部材および柱梁接合部の静的加力実験 を実施し、その力学性能を検証した実験結果について述 べる.

§ 2. 実験概要

2-1 試設計建物

試設計建物の概要を図-1に示す.地上60階,地下2 階,搭屋2階の建物で基準階の平面形状は,中央に4× 4スパン分の柱がない吹抜け空間を形成している.スパ ンは6mの8×8スパンで,架構は地上が純ラーメン構 造,地下は耐震壁付きラーメン構造となっている.地上 1~10階の柱にFc=100N/mm²のコンクリートを使用

^{*} 技術研究所技術研究部

^{**}技術研究所技術研究部建築技術研究課

し, 柱および梁主筋には SD 490 の D 35~41 を使用している. USD 685 は柱芯鉄筋として一部のみ用いる. せん断補強筋には高強度の SBPD 1275 を用いる.

2-2 柱部材実験概要

(1) 試験体

柱試験体は,試設計建物の低層部基準階中柱を想定し, 内法高さh=1100mm,断面b×D=350×350mm,せん 断スパン比 M/QD=1.6 で実大の約1/3の縮小モデルと して計画した.試験体パラメータとして,せん断補強筋 を試設計レベルに配筋したC2試験体(pw=0.8%)をも とに,それより密に配筋したC1試験体(pw=1.1%), 粗く配筋したC3試験体(pw=0.5%)とした.柱試験 体の一覧を表-1に示す.表中の曲げ耐力は,コンクリー トのコンファインド効果を考慮した断面分割法¹¹によ り,またせん断耐力は靭性保証型耐震設計指針²⁰に示さ れた式を用いて算定した.表に示されるように,曲げ耐 力とせん断耐力の比であるせん断余裕度が試験体により 異なる.柱試験体の形状・寸法の一例を図-2に示す.

(2) 加力・計測方法

載荷方法は建研式の加力装置を用い,水平力は 2000 kNのアクチュエータにより正負交番繰り返し漸増載荷 とした.加力は $\pm 1/800$, $\pm 1/400$ は1サイクルとし, 以降2サイクルとした.軸力は 5000kNの油圧ジャッキ により 0.3Ncu (Ncu= σ_{B} bD)の定圧縮軸力とした.

測定は,加力点での荷重の他に,水平変位,軸変位,部 材端回転角,主筋および横補強筋の各歪について行った.

2-3 接合部実験概要

(1) 接合部試験体

試験体は,サイズを実大の約1/2.5の縮小モデルとし, 試設計建物の低層部基準階を想定した十字形J1および ト形J2の2体とJ2試験体をもとに梁の曲げ耐力を上 げることにより接合部パネルへの入力を大きくしたJ3 試験体,またJ1に対し柱のコンクリート強度を低く設 定したJ4の計4体を計画した.接合部試験体の一覧を **表-2**に示す.表中の梁の曲げ耐力は断面分割法により 求め,接合部のせん断耐力は靭性保証型耐震設計指針式 により算定した.表に示されるように,各試験体は接合 部と梁の耐力比が異なっている.接合部試験体の形状・ 寸法を図-3に示す.試験体の梁は全て,Fc=55N/mm² を使用し,柱梁打ち継ぎ部にシアコッターを設けて,梁 の打設後に柱のコンクリートを打設した.

(2) 加力·計測方法

載荷装置を図-4に示す.載荷方法は、5000kN油圧 ジャッキにより柱に所定の軸力を載荷した状態で、柱反 曲点位置はピン支持し、梁反曲点位置をアクチュエータ 先端部とピンで結合させた加力装置により正負交番繰り 返し漸増載荷とした.加力は±1/800は1サイクルとし、 以降2サイクルとした.計測は、柱反曲点間に取り付け

武 沢	142	UI	U Z	U S				
断面 B×D (n	nm)							
内法寸法 h (n	nm)	1100						
設計基準強度 Fc		100N/mm ²						
軸 力 比		0.3σ _в						
		SD490 12-D19						
主 筋 Pg (%) 2.81								
	Pt (%)	0.94						
		SBPD1275	SBPD1275	SBPD1275				
せん断補強筋		4-U7.1@40	4-U7.1@60	4-U7.1@90				
	Pw (%)	1.1	0.8	0.5				
曲げ耐力 Qm	(kN)	1089						
せん断耐力 Qs	s (KN)	1509	1392	1196				
せん断余裕度	Qs/Qm	1.4	1.3 1.1					

た変位計測フレームにより,層間変形角,柱・梁の変形 量,接合部パネルのせん断変形量,柱の軸方向変形量, 主筋および横補強筋の各歪について行った.

コンクリートおよび鉄筋の材料試験結果を表-3に示 す.

§3. 実験結果

3-1 柱部材実験結果

(1) 実験経過

荷重-部材角関係を図-5に、部材角R=±1/100,R = ±2/100 時および最終破壊状況における各試験体の状 況を写真-1に示す.実験経過は、各試験体ともR= ±0.25/100時のピーク付近にて曲げひび割れが発生し た. R=±0.75/100時に柱脚にて主筋が圧縮降伏し、R = ±1/100時にて柱頭柱脚部にコンクリートの曲げせん 断ひび割れおよび圧壊が発生するとともに、主筋に沿っ たひび割れが多数発生した. 圧壊および主筋に沿ったひ び割れの程度は、せん断余裕度が小さいほど顕著に見ら れた. R=±1.5/100時にC1およびC2は主筋の引張 降伏を向かえると最大耐力に達した. その後, ひび割れ 等が進展するとともにかぶり部分の剥離が柱頭および柱 脚部を中心に反曲点位置付近にまで広がったが,安定し た履歴性状を示し、R=±5/100時においても、正加力 で最大耐力の約86%および約76%,負加力で約85% および約66%を保持していた.一方,せん断余裕度が 最も小さいC3は, R=±0.75/100時に主筋が圧縮降伏 するとともに最大耐力に達し、R=-3/100時にせん断 補強筋の一部に破断が生じ、最大耐力に対して約60% に低下したため,実験を終了した.

(2) 歪分布

せん断補強筋の歪分布を図-6に示す. 図は, 各サイ クルにおける正側の初回ピーク値をプロットした. せん 断補強筋の歪分布は, どの試験体も柱頭柱脚から D/2 以上離れた位置からは一様に分布している形状を示し た. C1およびC2については, R=4/100時において, 降伏は見られなかったが, せん断余裕度を1.1とした C 3では, R=2/100時に降伏が確認された.

反力床

図-4 接合部載荷装置

表-2 接合部試験体の一覧

	試 験 体	J 1	J 2	J 3	J 4		
	形状	十字形	۲	十字形			
	スパン×階高 (mm)	3000×1600	1500>	3000×1600			
	梁幅×梁成×梁長 (mm)		240×39	0×1000			
	設計基準強度 Fc		55N/	′mm²			
梁	主 筋 (SD 490)	J1 J2 J3 十字形 ト形 3000×1600 1500×1600 nm) $240 \times 390 \times 10$ $240 \times 390 \times 10$ $55N/mm^2$ 4 -D19 8-D2 Pt = 1.23% Pt=2.4) 2 -U7.1@70 nm) $400 \times 400 \times 11$ 100N/mm² 16 -D19 Pt = 0.2 $0.2 (0.2\sigma_b)$) 4 -U7.1@50 $ 4$ -D19) 4 -U7.1@50 $ 4$ -D19) 2 -U7.1@50 $ 4$ -D19) 2 -U7.1@50 $0.2 (0.2\sigma_b)$ $0.2 (0.2\sigma_b)$) 2 -U7.1@50 201 $7 \nu - \flat + \neg$ 291 146 263 0.7 1011 506 109 0.2 1078 149 2.1 3.0 1.4	8-D19 Pt=2.45%	4-D19 Pt=1.23%			
	助 筋 (SBPD 1275)		1@70	@70			
	柱幅×柱成×柱高 (mm)		400×40	$\begin{array}{c c} J 3 \\ \hline {\it H} \\ \times 1600 \\ 0 \times 1000 \\ (mm^2 \\ 8 \cdot D19 \\ {\it Pt} = 2.45\% \\ .1 (@70 \\ 00 \times 1130 \\ 00 \times 1130 \\ 00 \times 1130 \\ {\it Pt} = 0.90 \\ D19 \\ {\it Pw} = 0. \\ 0.2 \sigma_{\rm B} \\ {\it Pw} = 0. \\ 0.2 \sigma_{\rm B} \\ {\it Pw} = 0. \\ 109 \\ {\it Pw} = 0. \\ 109 \\ {\it F} \\ {\it T} \\ {\it F} \\ {\it$			
	試験体 J1 J2 J3 形状 +字形 ト形 スパン×階高(mm) 300×1600 1500×1600 梁幅×梁成×梁長(mm) 240×390×1000 設計基準強度Fc 55N/mm² 主筋(SD 490) 4-D19 Pt=1.23% 8-D19 Pt=2.43% 助筋(SBPD 1275) 2-U7.1@70 柱幅×柱成×柱高(mm) 400×400×1130 設計基準強度Fc 100N/mm² 主筋(SD 490) 16-D19 Pt=0.90 二数筋(USD 685) - 4-D19 帯筋(SBPD 1275) 4-U7.1@50 Pw = 0. 100 電筋(SBPD 1275) 2-U7.1@50 中10 一番筋(SBPD 1275) 2-U7.1@50 電筋(SBPD 1275) 2-U7.1@50 摩筋(SBPD 1275) 2-U7.1@50 Pw = 0. 定着法 通し ブレートナット 最大層せん断力Qm 291 146 263 Qm時接合部せん断力び割れQc 1078 接合部は人耐力Qi 2146 1499 耐力L 2.1 3.0 1.4	70N/mm ²					
試験体 J1 J2 形状 十字形 ト形 スパン×階高(mm) 3000×1600 1500×16 240×390× 300×160 1500×16 濃詰基準強度Fc 551/m 240×390× 300×160 注筋(SD 490) 4-D19 主筋(SD 490) 91=1.23% 水 91=1.23% 酸筋(SBPD 1275) 2-U7.16 技術 400×400× 設計基準強度Fc 100N/mm ⁻¹ 支筋(SD 490) 16-D19 大幅、柱成×柱高(mm) 400×400× 設計基準強度Fc 100N/mm ⁻¹ 支筋(SD 490) 16-D19 主筋(SD 490) 16-D19 支筋(SBPD 1275) 4-U7.100 準筋(SBPD 1275) 2-U7.100 横方比 0.2 (0.2 横筋(SBPD 1275) 2-U7.100 支着法 通し 7レ-レ-レ 支着法 通し 7レ-レ 支着法 通し 7レ-レ 支着法 通し 7レ-レ 支合部くん断力Qm 291 146 協会部せん断力Qn 2146 <td>$Pt = 0.90^{\circ}$</td> <td colspan="3">=0.90%</td>	$Pt = 0.90^{\circ}$	=0.90%					
111	芯鉄筋 (USD 685)	– 4-D19 –					
	帯 筋 (SBPD 1275)	J1 J2 J3 十字形 ト形 3000×1600 1500 × 1600 nm) 240 × 390 × 10 $55N/mm^2$ $55N/mm^2$ 4 -D19 8 - D1 Pt=1.23% Pt=2.4 2 -U7.1@70 nm) 400 × 400 × 11 100N/mm² 16-D19 Pt=0. $-$ 4-D19 0 2-U7.1@50 0 146	Pw = 0.).80%			
	軸力比		0.2 (0	$\begin{array}{c c} J 3 \\ \hline \# \\ \times 1600 \\ 0 \times 1000 \\ \end{tabular} \\ \hline mm^2 \\ \hline 8 \ D19 \\ \end{tabular} \\ $			
按스剑	帯 筋 (SBPD 1275)	2-U7	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pw = 0.	40%		
按口印	定着法	通し	プレー	$\begin{array}{c} J 3 \\ \hline {\it H} \\ < 1600 \\ 0 \times 1000 \\ 0 \times 1000 \\ \hline {\it mm}^2 \\ 8 \cdot D19 \\ {\it Pt} = 2.45\% \\ 1 @ 70 \\ 0 \times 1130 \\ {\it n}^2 \\ t = 0.90' \\ {\it n}^2 \\ t = 0.90' \\ \hline {\it Pw} = 0. \\ .2 \sigma_{\rm B}) \\ {\it Pw} = 0. \\ .2 \sigma_{\rm B} $	通し		
	最大層せん断力 Qm	291	146	263	291		
計質店	Qm 時接合部せん断力 Vj	1011	506	1095	1011		
司 昇 恒 (kN)	接合部せん断ひび割れ Qc	験体 J1 J2 J2 J 秋 十字形 ト形 高 (mm) 3000×1600 1500×160 × 梁長 (mm) 240×390×16 pt=1,23% Pt=2 3PD 1275) 2-U7.1@7 × 柱高 (mm) 400×400×1 度 Fc 100N/mm ² 2 490) 16-D19 Pt=0 SD 685) - 4-D19 BPD 1275) 2-U7.1@50 Pw 0.2 (0.2cm BPD 1275) 2-U7.1@50 Pw 146 20 BPD 1275) 2-U7.1@50 Pw 167 2-U7.1@50 Pw 170 2		823			
計算値 (kN)	接合部最大耐力 Qj	2146	1499	1499	1676		
	耐力比 Qj/Vj	2.1	3.0	1.4	1.7		

表--3 材料試験結果

コンカリート	封驗休	圧縮強度	弹性係数	圧縮強度時歪	ポマソン世	
3799-1	司马天平	(N/mm ²)	(kN/mm ²)	$\times 10^{-6} \mu$	ホノノン比	
Fc 55	J1 J2 J3	57.8	33.9	2747	0.193	
Fc 55	J4	51.0	34.7	2114	0.183	
Fc 70	J4	65.0	38.2	2433	0.211	
Fc 100	C1 C2 C3	108.0	46.3	3098	0.201	
Fc 100	J1 J2 J3	98.3	45.0	2898	0.219	
建 銘	試驗休	降伏点	弹性係数	降伏歪	引張強さ	
业人用力	叫得大学	(N/mm ²)	(kN/mm ²)	$\times 10^{-6} \mu$	(N/mm ²)	
SD 490		529	187	2990	571	
USD 685	全共通	764	189	4460	812	
SBPD 1275		1380	106	7120	1/18	

図-5 荷重-部材角関係

3-2 接合部実験結果

(1) 実験経過

層せん断力 – 層間変形角関係を図-7に、層間変形角 R=±2/100時における各試験体のひび割れ状況を図-8 に示す.実験経過は、試設計断面の十字形接合部 J1お よびト形接合部 J2 では R= ±0.25/100 時に梁曲げひび 割れが発生した. R= ±1/100 時にて梁せん断ひび割れ が発生し、ピーク近傍にて梁端部で主筋が降伏した. そ の後も柱および接合部にはひび割れ等はほとんど見られ ず,梁部材のひび割れ等が進展し,R=±4/100ピーク 時に最大耐力に達した.一方,梁主筋を2段配筋とした ト形接合部J3は、R=+2/100(-3/100)ピーク時に 最大耐力に達した. その後, 各試験体とも R= ±5/100 時にて梁端部のかぶり部分の剥離が生じたが、最大耐力 の低下はほとんど見られなかった. J1に対して柱のコ ンクリート強度を小さくした J4は R= ±2/100 時に接 合部にせん断ひびわれが発生した.また,R=+2/100 に向かうサイクルで最大耐力に達するとR=±3/100ま では荷重を維持したがその後のサイクルでは耐力が下が り、最終のR=±5/100時では最大耐力に対し66%ま で低下した.

図-6 せん断補強筋の歪分布

JI J2 J4

図-7 層せん断カー層間変形角関係

(R = -1/100)

C1試験体

(R = -2/100)C 2 試験体

(R = -1/100)

C3試験体

写真一1 破壊進展状況

(R = -2/100)

図-8 ひび割れ状況 (R=2/100)

(2) 歪分布

梁主筋の歪分布を図-9に示す.図は、各サイクルに おける正側の初回ピーク値をプロットした.2段筋の場 合は外側の鉄筋のデータである.通し配筋としている十 字形試験体のJ1およびJ4はR=2/100で引張り側が 完全に降伏していても,反対側は圧縮を保持していて, 良好な付着性状を示している. プレートナット定着とし ているト形試験体 12 および 13 は、R=5/100 の大変形 時においてもプレートナット付近の歪は 1000 μ 程度で あり、良好な付着性能を発揮しているのがわかる. 14 は、R=4/100以降接合部内の歪が一様に引っ張られ (2000 µ 程度),付着劣化が生じたために大きな耐力低下 が見られた.

§4. 各設計式との比較

実験値と計算値の比較を表-4に示す.計算値は日本 建築センターの多段配筋略算式, ACI のストレスブロッ ク法および断面分割法により求めた. 柱部材の比較にお いて曲げ終局強度は,多段配筋略算式³⁾では0.84~0.99, ACIストレスブロック法では0.91~1.05,断面分割法 では0.88~1.03であり、略算式では耐力をやや高めに 評価するが、概ねどの計算手法も実験値とよく一致して いる.一方,接合部の比較において断面分割法では耐力 を若干低めに評価するが、どの計算手法も実験値とよく 一致している.

試設計断面を模擬したJ1,J2試験体の層せん断力 - 層間変形角関係の復元力特性について、各設計式(初 期剛性,曲げひび割れモーメント,降伏点剛性低下率, 鉄筋降伏)により求めたトリリニアカーブと比較して図 -10に示す.ここで、初期剛性、曲げひび割れモーメ ント,降伏点剛性低下率については下記により算出した. また,鉄筋降伏の算定は、断面分割法により算出した. なお, トリリニアカーブの二次, 三次剛性については実 験の結果を鑑み, 接合部は剛と仮定し, 柱についても, 剛性低下がないものとして算出した.いずれの試験体に ついても,各設計式より求めたトリリニアカーブは,実 験のスケルトンカーブとよく合致している.

・架構の剛性

$$K = \frac{1}{1/K_B} + \frac{1}{1/K_C}$$

ここで,

K:架構の剛性 (N/mm)

1

 K_B :梁の剛性 (N/mm)

 K_C : 柱の剛性 (N/mm)

・ヤング係数

コンクリートのヤング係数⁴⁾は NewRC 提案式を用い t.

$$\boldsymbol{E} = \boldsymbol{K} \times 10^4 \times \left(\frac{\gamma}{24}\right)^2 \times \left(\frac{\boldsymbol{\sigma}_K}{60}\right)^{13} (21 \le F_c \le 100)$$

ここで,

*F*_c: コンクリートの設計基準強度 (N/mm²) σκ:構造体コンクリート強度の平均的な推定値で,施 工管理の実績に基づいて定める (N/mm²) γ: 単位容積重量(kN/m³)

 $K: K = k_1 \times k_2 \times 3.35$ k_1 , k_2 は粗骨材および混和材の 種類により定まる修正係数

図-9 梁主筋の歪分布

	試 験	体	C 1	C 2	C 3	J 1	J 2	J 3	J 4	*柱試験体のeQmaxはP-ð
軸力比 N/N ₀		0.26	0.28	0.27] 効果補正値, 接合部試験体		
曲げひびわれ (kN)		実験值 eQmc	476	594	579	43	19	28	44	の値は層セんめ力換昇値.
		計算值 cQmc	539	541	542	36	18	21	30]**柱の解析については, コア
実販 最大耐力 (kN) スト ブロッ 断面分	宝 睑 趌*	実験値 正側	1140	1085	1071	331	168	280	313	コンクリートのモデルに
	夫 驶 ॥	eQmax 負側	- 1156	- 1119	- 1003	- 331	- 174	- 290	- 313	NewRC で提案されたコン
		計算值 cQmax	1169	1208	1189	279	140	259	279	ファインドコンクリートと 辺の解析についてけエ
	略算式	eQmax/ 正側	0.98	0.90	0.90	1.19	1.20	1.08	1.12	デルを e 関数とした。鉄筋
		cQmax 負側	-0.99	-0.93	-0.84	-1.19	-1.24	-1.12	-1.12	のモデルはバイリニアとし
		計算值 cQmax	1086	1111	1099	295	148	267	294	完全弾塑性とした.
	 人 ト レ 人 ブロック法	eQmax/ 正側	1.05	0.98	0.97	1.12	1.14	1.05	1.06	
) =) / A	cQmax 負側	-1.06	-1.01	-0.91	-1.12	-1.18	-1.09	-1.06	
	断面分割法**	計算值 cQmax	1126	1146	1139	274	137	250	291	
		断面分割法** eQmax/ 正側 cQmax 負側	1.01	0.95	0.94	1.21	1.23	1.12	1.08	
			cQmax 負側	-1.03	-0.98	-0.88	-1.21	-1.27	-1.16	-1.08

表-4 実験値と計算値の比較

図-10 設計値との比較

・ポアソン比

せん断弾性剛性を求めるためのポアソン比は,指針³⁾ の値を採用し, 0.2 とする.

・部材の初期剛性

$$K_0 = \frac{1}{\left(\frac{L^3}{3 \cdot E \cdot I_e}\right) + \left(\frac{\kappa \cdot L}{G \cdot A}\right)}$$

ここで,

- **K**₀:初期剛性(N/mm)
- E: コンクリートのヤング係数 (N/mm²)

 I_e :鉄筋を考慮した等価断面二次モーメント (mm⁴)

G: コンクリートのせん断弾性係数 (N/mm²)

A:断面積 (mm²)

κ:形状係数 (=1.2)

- L: 剛域を考慮した部材長さ (L_0 +0.25D) (mm)
- L_0 : 部材の内法寸法 (mm)

D:部材せい (mm)

$$M_{cr} = (\sigma_t + \sigma_0) \cdot Z$$

ここで,

 M_{cr} :曲げひび割れモーメント (N・mm) σ_t :コンクリートの引張強度 (N/mm²) σ_0 :軸応力度 (N/mm²) Z_e :鉄筋を考慮した等価断面係数 (mm³)

·降伏点剛性低下率

$$\alpha_y = \left\{ 0.043 + 1.64 \cdot \boldsymbol{n} \cdot \boldsymbol{p}_t + 0.043 \cdot \left(\frac{\boldsymbol{a}}{\boldsymbol{D}}\right) + 0.33 \cdot \boldsymbol{\eta}_0 \right\} \cdot \left(\frac{\boldsymbol{a}}{\boldsymbol{D}}\right)^2$$

ここで,

 α_v :降伏点剛性低下率

n:ヤング係数比

p_t:引張鉄筋比

- a:シアスパン比
- η₀:長期軸力に対応する軸力比

§5. おわりに

超高強度コンクリート 100N/mm² および高強度鉄筋 を用いた試験体に対し,柱部材および柱梁接合部の構造 実験を行い,以下の知見を得た.

- 1) 柱部材の曲げせん断実験では、せん断補強筋比の違いによる破壊性状の検討を行い、せん断余裕度1.3 程度であればR=±5/100まで安定した変形性能 を示した。
- 2) 柱梁接合部の実験おいて, 試設計建物を想定した試 験体J1およびJ2は, R=±5/100まで最大耐力 の低下がほとんど見られず,安定した変形性能を示 した.
- 3)既存の耐力式(日本建築センターの多段配筋略算式, ACIのストレスブロック法および断面分割法)は, 柱試験体および柱梁接合部試験体の最大耐力を精度 よく推定していることを確認した.
- 4) 柱梁接合部実験の層せん断力 層間変形角関係において、各設計式で求めたトリリニアカーブは、十字形およびト形試験体のスケルトンカーブと良好な一致を示した。

謝辞

本研究の実施に当たり、ご指導いただきました日本大 学理工学部 安達洋教授に深く感謝致します.

参考文献

- (財)国土開発技術センター:平成4年度「高強度鉄 筋分科会報告書」, 1993.
- 2) 日本建築学会:鉄筋コンクリート構造物の靭性保証 型耐震設計指針・同解説,1997.
- (財)国土開発技術センター:平成4年度「構造性能 分科会報告書」,1993.
- 4) 都市基盤整備公団:超高層鉄筋コンクリート造建物 設計指針・同解説(案)(SH-RC), 2002.