大型鋼製下地間仕切壁工法の開発 (その1: 複合部材としての面外構造特性) Development of High Wall with Steel Furrings (Part 1: Out-of-Plane Structural Property of Hybrid Member)

小寺 直幸 *	高橋 孝二 *
Naoyuki Kodera	Koji Takahashi
高井 茂光 **	金川 基**
Shigemitsu Takai	Motoi Kanagawa
生方 弘 ***	白石 明****
Hiromu Ubukata	Akira Shiraishi

要 約

近年,物流施設等の大規模建築物に対して,仕上がりの良さや施工上の優位性がある鋼製下地間仕 切壁を用いることが期待されている.この場合,鋼製下地間仕切壁は6mや7mの高さが必要となる. JIS 規格の適用限界高さ5mを超える大型鋼製下地間仕切壁工法の開発が急がれる.

鋼製下地間仕切壁は非構造部材に類するが,近年の地震による被害も相俟って,面内および面外方 向の耐震性能を確保することが要求される.しかし,面外方向に関しては,石膏ボードとスタッドに よる複合部材としての難しさから,その構造特性は必ずしも明らかにされていない.

本報では、高さ5mから7mの鋼製下地間仕切壁の実験を実施し、複合部材としての面外構造特 性を評価した.さらに、石膏ボードの効果と局部座屈を考慮した設計式を提案し、妥当性を確認した.

目 次

- §1. はじめに
- §2. 鋼製下地間仕切壁の等分布載荷実験
- §3. 石膏ボードの曲げ実験
- §4. 設計式の提案
- §5. まとめ

§1. はじめに

物流施設等の大規模建築物の間仕切壁には、ALC を 用いることが一般的である.近年では、仕上がりの良さ や施工上の優位性から、ALC の代替として鋼製下地間 仕切壁(以下、LGS 壁と呼ぶ)を用いることが期待さ れている.この場合、LGS 壁は 6 m や 7 m の高さが必 要となる.しかし、LGS 壁の適用可能高さは JIS 規格に おいて 5 m と制限されている.高さが 5 m を超える場 合は中間梁を設ける必要があり、施工上の優位性が大き く劣る.したがって、高さ 5 m を超える大型 LGS 壁工

- ** 技術研究所建築技術グループ
- *** 本社建築事業企画部建築企画課

**** 本社建築設計部

法の開発が急がれる. 大型 LGS 壁の構成例を図-1 に 示す.

非構造部材の耐震性能の重要性は、2011年の東北地 方太平洋沖地震による建物被害¹⁾等より、改めて認識 されている.LGS壁には面内および面外方向の耐震性 能²⁾を確保することが要求される.しかし、面外方向 に関しては、石膏ボードとスタッドによる複合部材とし ての難しさから、その構造特性は必ずしも明らかにされ

^{*} 本社建築設計部構造1課

	形状		面材		鋼製下地材			下張とスタッドの接合	実験時	石膏ボード
試験体	高さ	幅	上面材	下面材	スタッド	スタッドピッチ	ランナー	タッピンねじピッチ	相対湿度	含水率
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(%)	(%)
1				上張+下張 12.5+12.5	C-100×45×10×0.8 WS-100 材質: SGCC	227.5	[-102×40×0.8	150	68	0.39
2			上張+下張 12.5+12.5			303			55	0.18
3	5000	010						450	62	0.36
4		910	上張+下張 21+21	-		227.5	wR-100 材質:SGCC		62	0.27
5	6000		上張+下張 上張+下張				150	69	0.58	
6	7000		12.5+12.5	12.5+12.5		455			61	0.54

表-1 試験体諸元

※ スタッドおよびランナーの素材引張試験結果:降伏応力度 σ,=308Nmm²,オング係数 E,=203000Nmm²,引張強さ σ₁=379Nmm²

図-2 試験体1の平面形状

写真-1 試験体端部

写真-2 2500 N/m²載荷時

ていない.

本報では,JIS 規格の適用限界高さ5mから物流施設 に需要がある高さ7mのLGS壁の実験を実施し,複合 部材としての面外構造特性を評価する.さらに,実験結 果を模擬した設計式の提案を行い,その妥当性を検証す る.

§2. 鋼製下地間仕切壁の等分布載荷実験

本章では、建材試験センター中央試験所で行った LGS 壁の等分布載荷実験について示す。

2-1 試験体

試験体諸元を**表-1**に示す.試験体は,JISA 6901の 石膏ボードとJISA 6517の鋼製下地材で構成された実大 LGS 壁とする.LGS 壁に要求される場合がある荷重条 件の水平震度1.0G³⁾,2500 N/m²(倉庫業法施行規則3 条の4第2項第2号)載荷時の挙動および破壊性状を確

認する. 試験体パラメータは, 高さ, 下面材の有無, ス タッドピッチおよび下張とスタッドを接合するタッピン ねじピッチとする.

試験体1の平面形状を図-2に、試験体断面形状を図 -3に示す、石膏ボードは強化石膏ボードGB-Fを用い る、両端部のランナーとスタッドの接合は差し込みとす る、スタッドと下張のタッピンねじによる接合はドライ ウォールスクリューを用いる、下張と上張の接合は炭酸 カルシウム系接着剤とし、24時間以上の養生後に実験 を行う、下張と上張の石膏ボードの継ぎ目は一致させな いように割付ける、スタッドにはスペーサー @600、振 れ止め @1200 を設ける、天井とスラブを想定したジグ と石膏ボード端部は、施工誤差および耐火目地材の充填 を考慮し、10 mm のクリアランスを設ける(写真-1).

2-2 載荷方法

試験体セットアップを図-4に示す. 天井とスラブ を想定したジグに試験体を水平に施工し,試験体下部に 自重サポートを設置する. この自重サポートを取り除い て 1.0 G (自重)のたわみを測定後,鉛袋を用いて 2500 N/m²まで載荷を行う(写真-2).2500 N/m²を5分間 保持した後,鉛袋を全て除荷し,5分間保持して残留た わみを計測する.残留たわみ計測後は,破壊に至るまで 載荷を行う.鉛袋は,JISA 4705を参考に,図-5に示 す①から⑩の順番で載荷する.たわみは,図-4中に 示す中央変位と端部変位の相対変位とする. 歪ゲージは,

図-6 等分布荷重 W-たわみる関係

図-4中に示すスタッドのフランジ裏側に貼付し,軸 歪を計測する.

2-3 実験結果および考察

(1) 1.0 G および 2500 N/m² 載荷時

各試験体の等分布荷重 W-たわみ δ 関係を図-6に、 実験結果一覧を表-2に示す. 1.0 Gにおいて、全ての 試験体が石膏ボードの割れや損傷がないことを目視によ り確認した.また、1.0 Gのスタッドフランジの最大軸 歪は 643μ (試験体 6) であり、素材引張試験より求めた 降伏軸歪 1517μ 以下の弾性範囲であることを確認した. 2500 N/m^2 に達した試験体は、試験体1と試験体4であっ た. 2500 N/m^2 載荷時において、試験体1は、下面材(引 張側)の石膏ボードの一部に割れが生じたが、耐力の急 激な低下は見られなかった。

(2) スタッドの局部座屈

破壊状況を**写真-3**に示す.最大耐力時の破壊性状は, 全ての試験体がスパン中央部近傍のスタッド圧縮側フラ ンジが局部座屈を生じた後,ランナーからスタッドが脱 落する性状であった.また,**写真-3**(d)に示すように, 石膏ボード解体後の各スタッドを確認すると,全てのス タッドが概ね同位置(支持スパン中央部近傍)で局部座 屈を生じていた.LGS壁の終局耐力は,スタッドの圧 縮側フランジの局部座屈で決まることが分かる. 表-2 実験結果一覧

試験体		1.0G(自重	[)時	最大耐力時			
	荷重 (N/m ²)	たわみ (mm)	試験体状況	荷重 (N/m ²)	たわみ (mm)	破壊状況	
1	442	3.8	異常なし	2942	77.7	スパン中央近傍の スタッド局部座屈	
2	428	6.6		2367	92.6		
3	442	9.2		2382	77.0		
4	379	5.2		3483	109.8	↓	
5	442	16.8		2166	143.7	ノンノールし合	
6	413	41.0		875	41.0		

(b) スタッド局部座屈

ー脱落 (d) 解体後スタッド 写真-3 破壊状況 (試験体 5)

(3) 石膏ボードの効果

タッピンねじピッチが大きい試験体3は、試験体1よ り初期剛性および最大耐力が小さい、タッピンねじピッ チが大きい場合、スタッドと石膏ボードの拘束効果(一 体度)が小さくなり、石膏ボードの剛性が LGS 壁全体 の剛性に付加されないためだと考えられる.

1.0 G時の支持スパン中央のスタッド軸歪分布を図ー 7に示す.両面張りの試験体1と片面張りの試験体4の 軸歪分布を比較する場合. 試験体4は中立軸が図心から 圧縮側に寄っていることが分かる. 片面張りのボード厚 さの合計 21 mm + 21 mm の 42 mm に対して、両面張 りのボード厚さの合計は 12.5 mm + 12.5 mm の 25 mm である. 断面積が大きいボードを圧縮側のみに配置する

図-7 スタッド軸歪分布(1.0G時支持スパン中央)

図-8 試験片の切り出し方向

表-3 試験片諸元および実験結果一覧

	寸法				実験結果		
試験体	繊維方向 (mm)	幅方向 (mm)	厚さ (mm)	試験片状態	曲げ強さ (N/mm ²)	曲げヤング係数 (N/mm ²)	
Al	400	300	12.5		7.37	3780	
A2	300	400		邦 27架	2.77	3010	
A3	400	300		12.5	2月 2月	5.96	3290
A4	300	400		白胶有两	2.32	2580	
B1	400	300	21	故協	5.12	3480	
B2	300	400		早乙次来	2.31	2930	
B3	400	300		2月2月	3.88	2640	
B4	300	400			個於作明	1 73	2390

(a) セットアップ時

写真-4 実験状況

ことで、圧縮側の曲げ剛性が高まり、スタッドの圧縮側 軸歪が減少すると考えられる.

タッピンねじピッチ. 面材の曲げ剛性はLGS 壁の面 外構造特性に大きく依存することが分かる.

§3. 石膏ボードの曲げ実験

本章では、建材試験センター中央試験所で行った石膏 ボードの曲げ実験について示す。

3-1 試験片および実験方法

石膏ボードの試験片は、JIS A 6901 に従い、400 mm × 300 mm に切り出す. 試験片の切り出し方向を図-8 に示す. 試験片パラメータは, 切り出し方向, 厚さおよ び試験片の乾燥湿潤状態とする. 石膏ボードは繊維方向 と幅方向、含水率によって曲げ強さおよび曲げヤング係 数が異なる. そのため、切り出し方向と乾燥湿潤状態を パラメータとしている. 試験片の数量は、試験片符号毎 に5体とし、曲げ強さおよび曲げヤング係数は、5体の 平均値から算出する. 試験片諸元および実験結果一覧を 表-3に示す.実験は、JISA 1408に従って行う.実験 状況を写真-4に示す.切り出した試験片の長手方向 400 mm を支持スパン 350 mm とする. 載荷は、支持ス パン中央に対する1点載荷とし、試験片が破壊するまで 載荷を行う.

A1. A2. B1. B2の乾燥試験片は、温度 40℃ ± 2℃で 調整した乾燥機中で恒量となるまで乾燥させた後、載荷 を行う. 恒量とは、6時間以上の間隔において測定した ときの質量の差が試験片質量の0.1%以下となる状態で ある. A3, A4, B3, B4の湿潤試験片は, 温度 40℃ ± 2℃, 相対湿度 85~90%に調整した恒温恒湿器の中で 96時 間静置した後,載荷を行う.

3-2 含水曲げヤング係数算定式

石膏ボードの曲げ実験結果および各試験片の含水率か ら含水曲げヤング係数算定式を求める.含水曲げヤング 係の直線近似を図-9に示す、試験片の含水率は、乾 燥前の重量と完全に乾燥させた後の重量から求める全乾 法により求めている. 含水ヤング係数算定式は厚さおよ び切り出し方向に対して、乾燥状態の曲げヤング係数と 含水率、湿潤状態の曲げヤング係数と含水率を最小二乗 法による直線近似を行って求めた.以下に、含水曲げヤ ング係数算定式を示す、この式より、含水率を考慮した 石膏ボードの曲げヤング係数を算定することが可能であ る

$E_{B1} = -749.4m + 3780$	$\left(0 \le m \le 0.68\right)$	(1)
$E_{B2} = -550.6m + 3006$	$\left(0 \le m \le 0.82\right)$	(2)
$E_{B3} = -1279.5m + 3479$	$(0 \le m \le 0.72)$	(3)
$E_{PA} = -736.6m + 2935$	$(0 \le m \le 0.77)$	(4)

 E_{B1} : 厚さ 12.5 mm 繊維方向の含水曲げヤング係数 E_{B2} : 厚さ 12.5 mm 幅方向の含水曲げヤング係数 E_{B3} : 厚さ 21 mm 繊維方向の含水曲げヤング係数 E_{B4} : 厚さ 21 mm 幅方向の含水曲げヤング係数 m: 含水率

§4. 設計式の提案

本章では,等分布載荷実験結果および石膏ボードの曲 げ実験結果を踏まえて,設計式の提案を行う.

4-1 等価曲げ剛性

実験結果より,石膏ボードの曲げ剛性はLGS 壁全体 の曲げ剛性に付加される.合成梁理論を基本とする場合, スタッドと石膏ボードを合成したLGS 壁の等価曲げ剛 性 *E*_H*I*_H は,次式で表すことができる.

図-10 合成断面の歪分布 4)

 $E_{sI_{s}}$:スタッドの曲げ剛性 $E_{BUI_{BU}}$:上面材石膏ボードの曲げ剛性 $E_{BDI_{BD}}$:下面材石膏ボードの曲げ剛性

 $E_H I_H = E_s I_s + E_{BU} I_{BU} + E_{BD} I_{BD}$

スタッドの曲げ剛性および石膏ボードの曲げ剛性は, 各々次式で表すことができる.

$$E_{s}I_{s} = E_{s}(I_{s0} + A_{s}x_{G}^{2})$$
(6)

$$E_{BU}I_{BU} = E_{BU}\{I_{BU0} + \alpha A_{BU}(x_u - x_G)^2\}$$
(7)

$$E_{BD}I_{BD} = E_{BD}\{I_{BD0} + \alpha A_{BD}(x_d - x_G)^2\}$$
(8)

 $E_s: 鋼材のヤング係数, I_{so}: 図心を通るスタッドの断面二次$ $モーメント, <math>A_s: スタッドの断面積, x_G: スタッドの図心から$ 合成断面の中立軸までの距離(以下,中立軸から上の領域を $正,下の領域を負とする), <math>E_{BU}: 上面材石膏ボードのヤング係$ $数, I_{BUO}: 図心を通る上面材石膏ボードの断面二次モーメント, <math>a$: ビス効率, $A_{BU}: 上面材石膏ボードの断面積, x_u: スタッドの図$ $心から上面材石膏ボードの図心までの距離, <math>E_{BD}$: 下面材石膏ボー ドのヤング係数, $I_{BDO}: 図心を通る下面材石膏ボードの断面二次$ $モーメント, <math>A_{BD}$: 下面材石膏ボードの断面積, $x_d: スタッドの$ 図心から下面材石膏ボードの図心までの距離

ここで, ビス効率 α⁴⁾ は, 相原ら⁴⁾ が提案したもので あり, タッピンねじにより曲げ歪が伝達する率である. 石膏ボードとスタッドの曲げ歪が線形に伝達する場合が ビス効率 1.0, 別々に変形する場合がビス効率 0 である. 合成断面の歪分布を図-10 に示す. ビス効率 α は, 等 分布荷重 w 時のたわみ δ の公式(9) を用いて, 実験時 の 1.0 G たわみとなる α を算出する.

$$\delta = \frac{5 w L^4}{384 E_H I_H} \tag{9}$$

L:LGS 壁の高さ

また,スタッドの図心から合成断面の中立軸までの距離 x_G は軸力の釣合い条件より,次式で表すことができる.

$$x_G = \frac{E_{BU} \alpha A_{BU} x_u + E_{BD} \alpha A_{BD} x_d}{E_s A_s + E_{BU} \alpha A_{BU} + E_{BD} \alpha A_{BD}}$$
(10)

4-2 等価断面性能

石膏ボードのヤング係数 E_{BU}および E_{BD}を,鋼材のヤ

(16)

ング係数 Esで除した値をヤング係数比 n とし、等価な 鋼断面に置換する. 合成断面の等価断面二次モーメント L.および等価断面係数 Z.は、各々次式で表すことがで きる.

$$I_e = I_s + nI_{BU} + nI_{BD} \tag{11}$$

 $Z_e = \frac{I_e}{v}$ (12)

y:中立軸から合成断面縁端までの距離

4-3 局部座屈応力度

実験結果より、LGS 壁の終局耐力はスタッド圧縮側 フランジの局部座屈で決まる. 圧縮側フランジが石膏 ボードで拘束されている場合、座屈波形は石膏ボード側 に生じなくなる.したがって、田中ら5)の文献を参考 に3辺固定支持1辺自由の圧縮板⁶⁾に近似する(図-11). この場合、スタッドの局部座屈応力度は次式で表 すことができる.

$$\sigma_{u} = \begin{bmatrix} \sigma_{y} & (R \le 0.5) \\ \{0.571(R - 0.5)^{2} - 1.01(R - 0.5) + 1.0\} \sigma_{y} & (R > 0.5) \end{bmatrix}$$
(13)

σ_u: 鋼材の局部座屈応力度(終局応力度), σ_v: 鋼材の降伏応力度 R:幅厚比パラメータ

(13) 式中の幅厚比パラメータ R を次式に示す.

$$R = \frac{b_s}{\pi t_s} \sqrt{\frac{12(1-v^2)}{k}} \sqrt{\frac{\sigma_y}{E_s}}$$
(14)

 b_s : フランジ幅, t_s : 板厚, v: ポアソン比, k: 座屈係数 ($k \ge 2.31$)

※F.S.:固定

(14) 式中の座屈係数 k を次式に示す.

$$k = \frac{4}{\rho^2} + \frac{40}{3\pi^2} + \frac{15\rho^2}{\pi^4} - \frac{20\nu}{\pi^2}$$
(15)

 ρ :縦横比 (d_s/b_s , d_s : スタッドせい)

4-4 鋼製下地間仕切壁の終局耐力式

(5) 式および(13) 式,田中ら⁵⁾の文献を参考として, LGS 壁の終局耐力 W₄ は以下の式で求めることができる.

$$W_u = \frac{8E_H I_H N}{E_s y_c B L^2} \sigma_u$$

yc: 合成断面の中立軸から圧縮フランジまでの距離 B: LGS 壁の幅, N: スタッド本数

4-5 設計式としての妥当性

(1) 終局耐力式の精度

終局耐力式の精度を図-12に示す.終局耐力(実験値) WuE は表-2に示す値である.終局耐力(計算値) WuC は, (16) 式により算定した. *E_{BU}*, *E_{BD}*は, **表-1**に示す含 水率を用いて(1)から(4)式で算定し、上張が繊維方向、 下張が幅方向で構成されていることを考慮して、繊維方 向と幅方向の平均値を用いた. ABU, ABD および IBU, IBD 算定上の石膏ボードの幅は、スタッドピッチと同値とし た. αは(9)式から算出した0.56(タッピンねじ@150 の試験体の平均値).0.22(タッピンねじ@450の試験体3) を用いた. σ_ν, E_s は**表-1**の素材引張試験結果を用いた. 図-12より、概ね±20%の精度で終局耐力を評価でき ている.

(2) 安全性の検証

終局耐力の安全性の検証を図-13(a)に示す.終局 耐力(設計値) W_{uD}は,(16)式で算定した. E_{RU}, E_{BD} は安全側となる湿潤状態を想定し,表-3に示す湿潤 状態の繊維方向と幅方向の平均値を用いた. ABU, ABD および IBU, IBD 算定上の石膏ボードの幅はスタッド ピッチ最小と想定される 227.5 mm とし,安全側とした. σ_{v} , E_s はスタッドの材料強度下限値である 205 N/mm², 205000 N/mm²を各々用いた.

1.0G時の曲げ応力度の安全性の検証を図-13(b) に示す.曲げ応力度(実験値)のBEは、図-4に示すスタッ ドフランジ裏側で計測した軸歪に素材引張試験結果の E_s を乗じて算出した.曲げ応力度(設計値) σ_{BD} は,自 重の等分布荷重 wL²/8 を(12)式で除して算出した.(12) 式算定時の E_{BU} , E_{BD} , A_{BU} , A_{BD} , σ_{y} , E_{s} , は, W_{uD} 算定 時と同様とした.

図-13 (a) および図-13 (b) より, W_{uD} , σ_{BD} は, $W_{\mu E}$, σ_{BE} を安全側に示すことができる.

§5. まとめ

- (1) 高さ5mから7mの鋼製下地間仕切壁の面外水平 力に対する終局耐力は、スタッド圧縮側フランジの局 部座屈で決まる.
- (2) タッピンねじピッチが小さい、あるいは圧縮側石膏 ボードの曲げ剛性が大きいほど、石膏ボードによる拘 束度が向上する.本報のパラメータの場合,前者は 23%、後者は18%終局耐力が大きくなる。
- (3) 石膏ボードの曲げ実験結果に対して最小二乗法によ る直線近似を行い、含水率を考慮した石膏ボードの曲 げヤング係数算定式を求めた.

- (4) 石膏ボードによる拘束度合を考慮した等価曲げ剛性 および等価断面性能,スタッドの局部座屈応力度から 成る終局耐力式を提案した.
- (5) 実験値と提案した設計式を用いて算定した計算値と の比較を行い, 概ね ± 20%の精度で終局耐力を評価 できることを示した. さらに, 安全性の検証を行い, 総じて安全側に設計できることを示した.

本研究で得られた知見を基に,新しい鋼製下地材を提 案する予定である.

謝辞

本研究は,八潮建材工業株式会社との共同研究として 実施したものである.八潮建材工業株式会社 岩下裕樹 氏らには多大なるご協力を頂きました.ここに記して, 深い謝意を表します.

参考文献

- 1) 熊谷亮平,他4名:平成23年(2011年)東北地方 太平洋沖地震における関東地方の非構造部材の被害 ーその2内装等一,日本建築学会大会学術講演梗概 集(東海),pp.73-pp.76,2012.9.
- 2) 日本建築構造技術者協会:設計者のための見落としてはならない非構造部材,2015.6.
- 建設省大臣官房官庁営繕部監修:官庁施設の総合耐 震計画基準及び同解説, pp.38-pp.39, 1996.11.
- 4)相原正志,他2名:鋼製下地材を用いた壁の曲げ剛 性に関する基礎的研究,日本建築学会大会学術講演 梗概集(東北),pp.1101-pp.1102,2009.8.
- 5)田中栄次,他5名:軽量鉄骨下地間仕切壁の面外 静的加力実験,日本建築学会技術報告集,第18巻, 第39号, pp.575-pp.578, 2012.6.
- 6) 土木学会:座屈設計ガイドライン,丸善,2005.