小土被り盛土区間および住宅地近傍の振動低減に配慮した トンネル掘削

The tunnel excavation in the small overburden embankment for the reduction of the vibration of the residential area

Takeshi Suzuki	Hiroaki Takamura			
鈴木 健**	高村 浩彰 ***			
Ryo Oka	Yoshiharu Saeki			
岡 竜*	佐伯 好治*			

要 約

猪渕トンネル(下り線)のトンネル掘削において,一部掘削区間のトンネル上部に住宅地造成に伴う盛土部が存在していた.盛土部の掘削については,住宅地の地表面沈下が懸念され,当初設計では, 支持力対策としてフットパイルが計画されていた.しかし,トンネルに近接して盛土部内に既設暗渠 が存在しており,既設暗渠の機能に損傷を与えるリスクもあった事から,掘削工法について再検討し, 全断面早期閉合工法を採用した.

また、トンネル掘削区間において住宅地が近接しており、地元協議により騒音・振動を抑制する事 を条件に爆破掘削の了解は得られたが、常時観測と十分な配慮が要求された. そこで振動を抑制する ために、非火薬破砕剤によるトンネル掘削を採用し、振動管理を行った.

本稿は盛土部の全断面早期閉合工法および非火薬破砕剤によるトンネル掘削の実績について報告 する.

目 次

- §1. はじめに
- §2. 盛土部のトンネル掘削
- §3. 住宅地近傍のトンネル掘削
- §4. まとめ

§1. はじめに

猪渕トンネル(下り線)は、新名神高速道路(川西 IC ~神戸 JCT 間)のうち、兵庫県川辺郡猪名川町内に 建設されるトンネルであり、トンネル延長はL = 502 m である、現場位置図を図-1に、現場状況写真を写真 -1に、工事概要を下記に示す。

工 事 名:新名神高速道路 猪名川中工事
 企 業 先:西日本高速道路㈱ 関西支社
 工 事場所:兵庫県川辺郡猪名川町上野〜猪渕
 工 期:平成26年5月27日〜平成30年1月15日
 トンネル名:猪渕トンネル(下り線) L = 502 m

* 西日本(支)猪名川東工事事務所
 ** 土木設計部設計二課
 ***技術研究所地域環境グループ

写真-1 現場状況写真

図-2 猪渕トンネル(下り線) 地質平面図縦断図

トンネル掘削部の主な地質は、砂岩優勢の砂岩頁岩互 層で構成されている.しかしながら、一部掘削区間にお いては、約30年前の住宅地造成時に実施された造成盛 土(以下、盛土部)が存在している(図-2参照).こ の盛土部の最小土被りは6.7 mであり、トンネル掘削幅 D(D=12.1 m)より小さい.また盛土部の地質は粘土 混じり砂礫であり、N値が平均11と脆弱であることか ら、トンネル掘削時には地表面沈下、切羽崩壊および地 耐力不足による沈下が懸念された.

また,盛土区間前後については,住宅地が近接し,地 元協議により騒音・振動を抑制する事を条件に爆破掘削 の了解は得られた.しかし地元からは,常時観測を行う とともに,十分な配慮を依頼された.そこで破砕による 振動発生の低減が期待できる非火薬破砕剤でのトンネル 掘削方法について検討を行った.

本稿は,盛土部におけるトンネル掘削実績と非火薬破 砕剤を使用したトンネル掘削の振動計測結果について報 告する.

§2. 盛土部のトンネル掘削

2-1 補助工法の変更

盛土部の補助工法は、当初設計では、多段式長尺鋼管 先受工、長尺鏡ボルトおよびフットパイルが計画されて いた.しかし、当該区間においてトンネルに近接して既 設暗渠が存在しており、フットパイルの施工によって、 注入材の流入による閉塞等、既設暗渠の機能に悪影響を 与える事が懸念された.既設暗渠の機能の損傷は、盛土 内の地下水位上昇、盛土の安定に対する悪影響および地 耐力の低下等のリスクが考えられる事から、フットパイ ルの代替案についての検討を行った.

検討の結果、全断面早期閉合が、既設暗渠に損傷を与

えるリスクを解消するとともに、工期および工費につい てもフットパイルに比べて優位になると判断し、採用す る事にした. 適用区間は、トンネルが全て盛土区間内と なる STA.73 + 33.2 ~ STA.72 + 89.2 (L = 44 m) とし た. 全断面早期閉合の閉合距離は 6 m とし、施工手順は、 上半 (1 m) →下半 (1 m) →上半 (1 m) →下半 (1 m) → 1 次インバート (2 m) とした.

写真-2 全断面早期閉合掘削施工状況

図-4 地表面沈下計測位置図

2-2 計測管理体制

盛土部のトンネル掘削時における地山挙動を正確に把 握するために網羅的に計測点を設けた.

地表面沈下測定位置図を図-4に示す.

2-3 三次元数値解析による最終沈下予測の見直し

盛土部の掘削を開始した所,盛土部の地表面沈下量が 当初予想に比べて大きな沈下が生じている事が確認され た.そこで,盛土部初期段階での計測データをフィード バックして,最終沈下の予測値を全断面早期閉合の施工 ステップを考慮した3次元数値解析にて見直しを行った.

解析では、最初に計測結果を用いて逆解析を実施し、 地山の弾性係数を見直した. 逆解析の結果、盛土部の弾 性係数は1.1 MPaであり、当初想定されていた弾性係数 30.8 MPaの約1/30と小さい値であった.次に、この弾 性係数を用いて、順解析により最終地表面沈下を予測し た.解析結果図を図-5および図-6に示す.解析の 結果、地表面沈下は、トンネル掘削影響範囲(45°)内 で大きな沈下となった.しかし、影響範囲外は小さく、 住宅地の最終沈下量は図-6のとおり、最大1.2 mm と 許容値(絶対沈下量20 mm、傾斜角1/1000)以下とな ると予想されたため、トンネル掘削を継続した.

2-4 計測結果

(1) 坑内変位

図-7に示す坑内A計測(天端沈下,脚部沈下および内空変位)の結果から,以下の傾向が確認された.

天端沈下量は,最大で31.6 mmの沈下となった.上 半脚部沈下量は,右側は最大で29.4 mnnの沈下,左 側は31.4 mmの沈下であった.右側と左側の沈下量は, どの断面においても沈下量に大きな差がない事が確認さ

図-5 地表面沈下解析結果図

-9.1

1.4

-10.4

れた.また,内空変位量は全体的に小さい値であった. (2)地表面沈下測定(盛土)

トンネル掘削時の盛土斜面方向のA測線地表面沈下 計測結果(図-4参照)を表-1および図-8に示す. 図-8は、計距変位で整理し、横軸は上半離れを掘削 幅 12.1 m で除した値である.

地表面沈下量は**表-1**のとおり,トンネルセンター(A - 7)で最大146.3 mm(切羽通過後92.5 mm)となった. トンネル坑内の天端沈下は,31.6 mmであり,地表面沈下は,盛土自体の圧縮変形が大きいものと推測される.

最終沈下量に対する切羽通過時の沈下量の割合を先行 変位率とすると,**表-1**および図-8のとおり,計測 位置によって特徴が異なる結果であった.ただし,各計 測点の先行変位率の値は,トンネル直交方向で切羽位置 を評価している.

各水平変位ベクトルの整理結果を図-9に示す.変位 ベクトルは、トンネル掘削位置(切羽)に向かっている ことが分かった.例えば、A-7の変位ベクトルは、ト ンネル掘削通過前後で変位ベクトル方向が逆転しており、 トンネル掘削による影響が顕著に現れた.また、A-1 は盛土斜面下方向ではなく、トンネルに向かって変位し ていることが確認でき、盛土のすべり挙動ではなく、ト ンネル掘削部へ向かう変位であったと判断できる.

表-1 A 測線地表面沈下計測結果

	切羽到達時の 地表面変位量 <i>δ</i> 1 (mm)	6/16時点の地 表面沈下量 ∂2 (mm)	先行変位率 (<i>る</i> 1/ <i>る</i> 2)
A1	-14.8	-19.0	77.9%
A2	-29.9	-50.6	59.1%
A3	-32.9	-64.7	50.9%
A4	-50.1	-102.3	49.0%
A5	-48.2	-116.4	41.4%
A6	-63.5	-136.0	46.7%
A7	-53.8	-146.3	36.8%
A8	-46.3	-143.5	32.3%
А9	-42.2	-133.9	31.5%
A10	-23.7	-116.3	20.4%
A11	-13.9	-98.1	14.2%
A12	-5.5	-82.0	6.7%
A13	-1.4	-72.3	1.9%

図-8 地表面沈下計測結果

図-9 地表面沈下変位ベクトル (上左:計測位置平面図,上中:A-1,上右:A-4,下左:A-7,下中:A-10,下右:A-13)

(3) 解析結果と計測結果の比較

実際に計測されたA測線の地表面沈下量と解析で計 測された値について比較した(図-10参照).

解析では山側の沈下量はほとんど発生せず,また沈下 量の最大値は、トンネルセンターから谷側に 10 m の位 置に発生する結果であった.一方,実際の計測では、ト ンネルセンター直上で最大沈下量が発生し、山側に大き な沈下が発生した.解析結果と実測値に乖離が生じた原 因は、実際の盛土と地山の境界位置に関する情報が少な かったことから,解析モデル作成時に、境界位置を推定 して設定したためと考えられる.

(4) 地表面沈下量(住宅地)

トンネルと住宅地の位置関係の計測位置を図-11 に 示す. また計測結果を図-12 に示す.

D 測線の計測結果は、トンネル切羽通過前から通過後 にかけて沈下量が最大1mmであった.よって住宅値に は、トンネル掘削による沈下の影響は、最小限に抑えら れたものと判断される.

2-5 盛土区間掘削の成果

(1) 住宅地への影響

トンネル掘削時の絶対沈下量および変形角は許容値以 下であった.また計測結果から、トンネル掘削による住 宅地への影響は、最小限に抑えることができた. (2) 盛土

トンネルセンター直上の盛土部表面には,150 mm 程 度の沈下量が生じ、トンネル掘削により盛土部には大き な沈下が生じた.しかしながら、トンネル掘削後,沈下 は収束しており、かつ、以下の観点から、盛土の安定は 確保されていると考えられる.

盛土の変位は、トンネル掘削により生じたものであり、 すべり挙動ではないと考えられる.また、トンネル掘削 休止時は、各種の変位計測結果の変化が小さかったこと から、トンネル掘削による応力開放によって変位が生じ たと考えられる.

地表面変位および沈下は、トンネル掘削部に向かって 発生したことからもトンネル掘削による変位であり、盛 土のすべり挙動ではないと考えられる.

ただし、予測解析結果よりも大きな沈下が生じた原因 として、トンネル掘削による変形によって盛土中の間隙 が詰まった(圧縮した)と推察される.盛土施工時の締 固め管理状況は資料がなく確認できなかったが、盛土内 に空隙が生じた原因としては、盛土材の経年劣化に伴う の細粒や、盛土の含水比低下に伴って密度が小さくなっ たことが考えられる.

§3. 住宅地近傍のトンネル掘削

盛土区間前後の住宅地近傍において,トンネル掘削に 伴う振動レベルを低減させるために,非火薬破砕剤の使

図-13 住宅地近傍の断面図

用を提案した.非火薬破砕剤使用区間を図-2に,住 宅地最近接部の断面図を図-13に示す.

3-1 非火薬破砕剤のメカニズム

非火薬破砕剤は、点火することによって破砕剤の酸化 還元反応で発生した高熱によって、破砕剤中に含まれる 結晶水が瞬時に気化して水蒸気(ガス圧)に変わり、破 砕孔内に高い膨張圧が作用して、岩盤を破砕する.

非火薬破砕剤は以下の特徴を有している.

①非火薬のため火薬類取締法の適用を受けない.

②水蒸気による膨張圧で岩盤を破砕するため、爆薬に比べて、低振動の破砕を行うことが可能となる。

- ③段発イニシエーターは電子制御による延時方式を採用 しており、多段発破砕が可能で適切な秒時間隔の段発 イニシエーターを使用することで周囲への影響を最小 化できる。
- ④段発イニシエーターを使用することで、トンネルでの 段発破砕を要求される現場での破砕効果や作業効率が

向上する.

非火薬破砕剤と火薬類との比較表を表-2に示す.

3-2 管理基準値

振動規制法では発破(破砕)振動に関する規制がない ことから振動の規制値は、「特定工場に係わる規制基準」 を準用して設定し、昼間を 60dB、夜間を 55dB で管理 することとした。

3-3 破砕振動の推定式

振動予測式を以下に示す. 試験破砕時および住宅地近 傍での破砕時では,以下のK値およびQ値を計測結果 から同定して,予測式を修正し,実際の振動伝播に合わ せた予測式を構築することとした¹⁾.

VL = 20LogV + Q

- VL:振動レベル (dB)
- V :振動速度(cm/sec)で以下の式にて算出する
 V = K × W^{0.75} × D⁻²
- K :発破条件によって変化する係数 (以下,K値と称す)
- W :芯抜き時斉発薬量(kg/段)
- D : 切羽から計測場所までの距離(m)
- Q : 定数(一般的な予測では= 83,以下Q値と称す)

3-4 試験施工時の計測結果

非火薬破砕剤使用区間のトンネル掘削に先立ち,住宅 地から離れた測点で試験施工を実施して,住宅地に到達 する振動加速度を計測した.計測した振動加速度から, 振動速度,振動レベルを算定した.その際,通常の爆薬 との相違を確認するため,MS電子雷管 DS電子雷管を 使用した制御発破も実施して比較を行った.

試験破砕における非火薬破砕剤による破砕は良好で あった(写真-3,写真-4および写真-5参照).

試験施工時の振動レベルの計測結果を表-3に示す. 振動加速度から変換した振動レベルに着目すると, MS 雷管 DS 雷管を併用した制御発破時の振動レベルは平均 61.3dB となった.一方,非火薬破砕剤使用時では,平 均 53.0 dB となり, MS 雷管 DS 雷管を併用した制御発 破に比べて 8.3 dB 小さくなった.また,計測値から K 値を推定すると, MS 雷管 DS 雷管併用制御発破の K 値 は 196,非火薬剤による破砕時の K 値は 48 (24%に低下) となった.

3-5 住宅値近傍掘削時の計測結果

非火薬剤を使用した住宅地近傍での掘削時の振動予測 結果と実測結果を表-4に示す.

住宅地近傍での非火薬剤に芯抜部の斉発薬量は, 試験 破砕時の実績を考慮して 1.2 kg/ 段とした. 破砕時の振

表-2 非火薬破砕剤と火薬類の比較表

項目	非火薬破砕剤	火薬類			
外観	Pitrase Altras	(白水県菜) (白水県美)			
家種	200g, 400g, 1000gの3種類	100g, 200g, 750g, 1000g			
未性	(連結して600g,800gも可能)	がメイン(薬種多数)			
附帯設備	取扱所・火工所必要なし	取扱所・火工所が必要			
輸送	宅急便 OK	火取法に基づく			
点火具の種類	80種類	MS, DSとも20種類			
		(組合せで30種類程度)			
段発方法	点火具内のICチップで秒時を	延時薬で秒時を調整することに			
	調整することにより80段発	より20段発			
点火器	瞬発は発破器,段発は専用点火	発破器			
	器(コントローラー)を使用				
発生振動	爆薬の1/10程度	威力が強い分,振動は大きい			
結線方法	段発は並列結線	直列結線			
薬剤の反応速度	100~300 m/s	5000~6000 m/s			
発生ガス量	351 £/kg	8000 l/kg			
メカニズム	金属の酸化還元反応で 非火薬剤を反応させて発生する ガス圧を利用	衝撃波と高温・高圧のガス圧で 対象物を破壊する			

写真-3 結線状況写真(並列結線)

写真-4 破砕状況写真

写真-5 振動測定状況写真

動加速度を測定して,振動速度,振動レベルを算定した 結果,振動レベルは56.0 dBとなり,夜間の管理基準値 である55 dBを超えた.そこで,実測値を予測式にフィー ドバックし,K値およびQ値を見直した結果,K値は 145,Q値は79となった.また,得られた値から,夜間 の管理基準値以下となる芯抜部の斉発量を再計算し0.8 kg/段とした.斉発量の見直し後の計測される振動レベ ルは,概ね55.0 dB以下となった.

また,STA.72 + 55 以降は,予測値と実測値の差が大 きくなったため,Q値を再度見直し83 とした.Q値が 変化した理由は,切羽の進行に伴い計測位置を変更した 事が考えられる.作成した振動予測式から得られる予 測振動レベルと実測値の誤差は,概ね2 dB以下となり, 高精度で予測・管理できた(図-14 参照).

なお,STA.72 + 44 以降の実測値は,計画当初で構築 した予測式と乖離する傾向が見られた.そこで,数回の 結果から予測式を再構築すると,K値は81,Q値は82 となった.K値は当初のK値に比べて56%まで低減した. 上記の原因について検討した結果,計測点が切羽前方か ら後方に変化したことが原因と考えられる.この現象は, 既往の計測事例と同様の傾向を示している.

§4. まとめ

(1) 盛土区間の施工

全断面早期閉合工法を採用した事により,住宅地の沈 下を許容値以内に抑えることができた.

盛土部の地表面沈下計測を網羅的に実施した結果,計 測点の位置によって,先行変位率や変位の収束性に違い がある事がわかった.今後,類似した地山を掘削する場 合は,今回のように計測結果のフィードバックを実施し て,トンネル掘削時の周辺地山や地表面の挙動を詳細に 把握しながら掘削する事が重要と考えられる.

(2) 住宅地近傍

トンネル掘削によって発生する振動に配慮して,非火 薬破砕剤を用いたトンネル掘削を実施した.

非火薬破砕剤による破砕時の振動について,試験施工 時に住宅地近傍で予測式を構築し,現地での測定結果を 予測式に反映させることで,少ない誤差で非火薬剤使用 区間の振動レベルを管理できた.また,切羽の進行と ともに振動レベルの計測を定期的に行い,計測結果を フィードバックして,予測式の見直しを行いながら振動 レベルを管理する事が重要と考えられる.

参考文献

 1) 川端他,双設トンネルの2期線新設工事における発 破振動管理手法に関する一提案,土木学会論文集F 2008.9

表-3 試験破砕時の計測結果

測定条件								測定結果		
回数	雷管	в	時間	天気	TD	支保 パターン	使用 火薬量(kg)	火薬原単位 _(kg/m3)	段数	振動 (dB)
1	MSDS	1月14日	9:00	暗	205.1	CI	54.0	0.9	27	61.9
2	MSDS	1月15日	8:45	雨	207.5	сI	54.0	0.9	27	60.7
3	非火薬剤	1月15日	15:50	崩	208.7	CI	80.0	1.3	25	53.1
4	非火薬剤	1月16日	12:05	UĘ\$	209.9	СІ	73.8	1.2	25	52.8
MS雷	MS雷管DS雷管併用制御発破平均								61.3	
非火薬	非火薬剤破砕平均								53.0	

発電	按条件	予測						測定結果	
回数	STA.	測定 位置	同定K	芯抜の 斉発量 (kg)	切羽から 測定位置までの 距離(m)	振動速度 V(kine)	同定 Q値	振動レベル VL(dB)	振動レベル (dB)
1	72+74	民家	145	1.2	54.3	0.056	79	54.0	56.0
2	72+71	民家	145	0.8	55.0	0.040	79	51.0	49.6
3	72+70	民家	145	0.8	55.2	0.040	79	51.0	51.0
4	72+69	民家	145	0.8	55.5	0.040	79	51.0	50.0
5	72+68	民家	145	0.8	55.8	0.039	79	50.8	53.3
6	72+67	民家	145	0.8	56.1	0.039	79	50.8	51.7
7	72+64	民家	145	0.8	57.1	0.038	79	50.6	51.0
8	72+63	民家	145	0.8	57.5	0.037	79	50.4	52.2
9	72+61	民家	145	0.8	58.3	0.036	79	50.1	50.8
10	72+60	民家	145	0.8	58.7	0.036	79	50.1	53.9
11	72+58	民家	145	0.8	59.6	0.034	79	49.6	51.3
12	72+57	民家	145	0.8	60.0	0.034	79	49.6	50.5
13	72+56	民家	145	0.8	60.5	0.033	79	49.4	46.3
14	72+55	民家	145	0.8	61.0	0.033	83	52.9	52.9
15	72+54	民家	145	0.8	61.5	0.032	83	52.7	54.6
16	72+53	民家	145	0.8	62.0	0.032	83	52.7	53.1
17	72+52	民家	145	0.8	62.5	0.031	83	52.4	52.4
18	72+51	民家	145	0.8	71.0	0.024	83	50.2	51.9
19	72+50	民家	145	0.8	71.0	0.024	83	50.2	47.1
20	72+50	民家	145	0.8	54.0	0.042	83	55.0	54.0
21	72+49	民家	145	0.8	54.0	0.042	83	55.0	55.0
22	72+48	民家	145	0.8	54.0	0.042	83	55.0	55.0
23	72+47	民家	145	0.8	54.0	0.042	83	55.0	57.0
24	72+46	民家	145	0.8	69.5	0.025	83	50.5	50.8
25	72+45	民家	145	0.8	54.0	0.042	83	55.0	56.5
26	72+44	民家	81	0.8	68.3	0.015	82	45.0	43.9
27	72+42	民家	81	0.8	54.0	0.023	82	48.7	50.5
28	72+41	民家	81	0.8	54.0	0.023	82	48.7	48.9
29	72+40	民家	81	0.8	54.0	0.023	82	48.7	52.5
30	72+39	民家	81	0.8	54.0	0.023	82	48.7	49.2
31	72+38	民家	81	0.8	54.0	0.023	82	48.7	50.8
32	72+37	民家	81	0.8	54.0	0.023	82	48.7	50.6
33	72+36	民家	81	0.8	66.0	0.016	82	45.6	48.7

表-4 住宅地近傍での予測結果と実測測定結果

図-14 予測振動レベルと実測振動レベルの差異