# 大型鋼製下地間仕切壁工法の開発 (その2:マッシブウォール工法の構造実験) Development of High Wall with Steel Furrings (Part 2: Structural Test of Massive-Wall)

小寺 直幸\* 高橋 孝二\* Naoyuki Kodera Koji Takahashi 高井 茂光\*\* 金川 基\*\* Shigemitsu Takai Motoi Kanagawa 生方 弘\*\*\* 白石 明\*\*\*\* hiromu Ubukata Akira Shiraishi

## 要 約

物流施設等の階高が高い建築物には、壁高さ7mを超えるような大型の鋼製下地間仕切壁が必要 とされる.また、物流施設の間仕切壁には、面外方向に対して、倉庫業法に規定される2500 N/m<sup>2</sup> 以上の耐荷重性能を要求される場合がある.これらの高さおよび荷重に対応するために、筆者らは、 断面性能に優れ、かつ施工上の優位性がある新しいスタッド(4隅に折返しを有する角スタッド)を 考案し、「マッシブウォール工法」を開発した.

本報では、マッシブウォール工法の概要および構造実験の結果を報告する.

目 次

- §1. はじめに
- §2. 工法概要
- §3. 構造実験計画
- §4. 実験結果および考察
- §5. まとめ

# §1. はじめに

物流施設等の階高が高い建築物には,壁高さ7mを 超えるような間仕切壁が必要である.従来のJIS材の鋼 製下地間仕切壁(以降,LGS壁と呼ぶ)を用いる場合, JIS規格の適用限界高さ5mを超えるため,中間梁を設 ける必要がある.中間梁の設置は,設計や施工の手間を 増加させる.中間梁が不要となる大型LGS壁の開発が 望まれる.

大型 LGS 壁を実現するためには,構造安全性の検証 が必要である.LGS 壁の面外方向においては,水平震 度最大1Gに対してLGS 壁が損傷しない構造性能<sup>1)</sup>が 要求される.さらに,物流施設の場合は,倉庫業法(施

\* 建築設計部構造一課

- \*\* 技術研究所建築技術グループ
- \*\*\* 建築事業企画部建築企画課
- \*\*\*\*建築設計部

行規則 3 条の 4 第 2 項第 2 号) に規定される 2500 N/m<sup>2</sup> 以上の耐荷重性能を要求されることがある.前報その  $1^{2)}$ では,JIS 材の LGS 壁の構造実験を行い,最大 5.5 m の高さまで 2500 N/m<sup>2</sup> 以上の荷重に対応することを確 認したが,7 m を超えるような高さには対応できていな い.7 m を超えるような高さで 2500 N/m<sup>2</sup> 以上の荷重に 対応するためには,断面性能に優れた新しいスタッドを 考案する必要がある.

筆者らは、八潮建材工業株式会社との共同開発により、断面性能に優れ、かつ施工上の優位性がある新しい スタッド(4隅に折返しを有する角スタッドである、以



図-1 マッシブウォール工法のイメージ

| タイプ      | マッシブスタッド (考案スタッド)                                                          | 厚肉タイプ                                                                    | ハイCタイプ                                                                           | JISスタッド                                                             |  |
|----------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| 断面形状     |                                                                            |                                                                          |                                                                                  |                                                                     |  |
| 耐荷重性能    | 角形状のスタッドの4隅に折返しを設け<br>ることで、断面性能を向上している。<br>せいや幅を大きくしていないため、局<br>部座屈独度が大きい。 | 角形状のスタッドの板厚を厚肉にする<br>ことで、断面性能を向上している.せ<br>いや幅を大きくしていないため、局部<br>座屈強度が大きい. | C形状のスタッドのせいを大きくして<br>断面性能を向上している.ただし、C<br>形状であること,せいを大きくしてい<br>ることから,局部座屈強度が小さい. | 断面性能,局部座屈強度共に小さい.                                                   |  |
|          | ◎<br>■S スタッドと同笑の毎回であるため                                                    | ◎<br>ドライウナールスクリューお上がスク                                                   | □<br>US Z タッドと同葉の振回であるため                                                         | △<br>毎回が0.8mmであるため ドライウォー                                           |  |
| ビス留めの容易性 | ドライウォールスクリューおよびスク<br>リュードライバーによるワンタッチビ<br>ス留めが可能である。                       | リュードライバーの適用板厚1.0mmを超<br>えるため, ワンタッチビス留めができ<br>ない.                        | ドライウォールスクリューおよびスク<br>リュードライバーによるワンタッチビ<br>ス留めが可能である。                             | (収存かのの前にの) ボライ シネ<br>ルスクリューおよびスクリュードライ<br>バーによるワンタッチビス留めが可能<br>である. |  |
| 設置の容易性   | 振れ止めやスペーサーが不要であるこ<br>とから、施工を1段階省略してスタッド<br>を建込むことが可能である.                   | 振れ止めやスペーサーが不要であることから、施工を1段階省略してスタッド<br>を建込むことが可能である.                     | C形状のスタッドであることから振れ<br>止めやスペーサーが必要である.<br>∧                                        | C形状のスタッドであることから振れ<br>止めやスペーサーが必要である. 重量<br>が軽いことから, 作業性は良い.         |  |

表-1 マッシブスタッド(考案スタッド)と従来スタッドの比較

#### 表-2 マッシブスタッドの断面寸法および断面解析結果

| せい        | 幅                       | 折返し長さ                       | 板厚                                   |   |
|-----------|-------------------------|-----------------------------|--------------------------------------|---|
| H<br>(mm) | B<br>(mm)               | F<br>(mm)                   | t<br>(mm)                            |   |
| 100       | 45                      | 15                          | 0.9                                  |   |
| 材質        | 断面積                     | 断面二次モーメント                   | 断面係数                                 | H |
| SGC400    | A<br>(mm <sup>2</sup> ) | $I_x$<br>(mm <sup>4</sup> ) | Z <sub>x</sub><br>(mm <sup>3</sup> ) | 1 |
|           | 355.7                   | 514700                      | 10290                                |   |

<sup>※</sup>表中のI<sub>x</sub>, Z<sub>x</sub>は実際の設計で用いる値ではない.

降,マッシブスタッドと呼ぶ)を考案し,「マッシブウォー ル工法」を開発した、マッシブウォール工法のイメージ を図-1に示す.本報では、マッシブウォール工法の 概要および構造実験の結果を報告する。

## §2. 工法概要

#### 2-1 構成

マッシブウォール工法 (図-1) は、マッシブスタッ ド、JIS 材ランナより立上り長さおよび板厚が大きいラ ンナ(以降,マッシブランナと呼ぶ),せっこうボード で構成された大型 LGS 壁工法である. マッシブスタッ ドは、スラブ等に固定されたマッシブランナの間に嵌め 込まれる.また,マッシブスタッドには振れ止めやスペー サーは設けない.マッシブランナの固定には、ねじ固定 式あと施工アンカーや金属拡張式あと施工アンカーを用 いる. せっこうボードは、従来の LGS 壁と同様に施工 する.

## 2-2 マッシブスタッドの特徴

マッシブスタッドと従来スタッドの比較を表-1に. マッシブスタッドの断面寸法および「CADTOOL フレー ム構造解析 12」による断面解析結果を表-2に示す. (1) 耐荷重性能

ハイCタイプのように局部座屈が発生しやすい形状 でスタッドのせいや幅を大きくする場合、断面性能は向 上するが,幅厚比が大きくなるため,板要素の局部座 屈強度が低下する. 板要素の局部座屈強度は, LGS 壁 の終局耐力に大きな影響を及ぼす<sup>2)</sup>. マッシブスタッド は、角スタッドの4隅に15mmの折返しを設けることで、 板厚、せい、幅を従来の JIS 材スタッドと同等としなが らも,断面性能および局部座屈強度を大きく向上させて いろ

(2) ビス留めの容易性

厚肉タイプは、角スタッドを厚肉化したもので、断面 性能および板要素の局部座屈強度が大きい.しかし.ド ライウォールスクリューおよびスクリュードライバーの 適用板厚1.0mmを超える板厚であることから、ワンタッ チビス留めが出来ない、マッシブスタッドは、板厚が0.9 mm であるため、ワンタッチビス留めが可能である. (3) 設置の容易性

ハイ C タイプや JIS スタッドは、C 形状であることか ら、振れ止めおよびスペーサーを設けることが耐火認定 上, 要求される. この場合の施工方法は, ①スタッドを 片側に集中して建込み、②振れ止めを通す、③スタッド を所定の位置に移動する、といった作業が発生するため、 施工に難がある. 振れ止めを通すために、スタッドを断 面欠損させるため、耐荷重性能も低下する、マッシブス タッドは角形状であることから、振れ止めが不要である.

## §3. 構造実験計画

本章では、第三者機関で行ったマッシブウォール工法 の構造実験の実験計画について示す.

## 3-1 試験体

(1) 試験体の設定

試験体は JIS A 6517 を参考に, 天井とスラブを想定し たジグに実大のLGS 壁を水平施工する。構造実験によ り、水平震度1G、2500 N/m<sup>2</sup>載荷時の挙動および破壊 性状等を確認する. 試験体諸元を表-3に示す. 試験

|     |   | 形状                |     | せっこうボード               |                                |                        | 下張とスタッドの接合 |                                         |       |
|-----|---|-------------------|-----|-----------------------|--------------------------------|------------------------|------------|-----------------------------------------|-------|
| 試験体 |   | 高さ 幅<br>(mm) (mm) |     | 上面材                   | 下面材                            | マッシブスタッド               | スタッドピッチ    | マッシブランナ                                 | ビスピッチ |
|     |   |                   |     | (mm)                  | (mm)                           | (mm)                   | (mm)       | (mm)                                    | (mm)  |
|     | 1 | 7200              |     | -                     | -                              |                        | 455        | [-103×50×1.2<br>材質:SGCC<br>[-104×50×1.6 | -     |
|     | 2 | 6550              |     | 強化PB t12.5+強化PB t12.5 | 強化PB t12.5+強化PB t12.5          |                        | 303        |                                         | @150  |
|     | 3 | 7550              | 010 | (上張 + 下張)             | (上張 + 下張)                      | 100×45×15×0.9          | 227.5      |                                         |       |
|     | 4 | 7200              | 910 | 強化PB t21+強化PB t21     |                                | (H×B×F×t)<br>材質:SGC400 | 303        |                                         |       |
|     | 5 | 7700              |     | (上張 + 下張)             | -                              |                        | 227.5      | 材質:SGCC                                 |       |
|     | 6 | 6550              |     | PB t12.5<br>(下張)      | 強化PB t21+強化PB t21<br>(上張 + 下張) |                        | 227.5      | [-103×50×1.2<br>材質:SGCC                 |       |

表-3 試験体諸元

体は、高さ、上面材・下面材の仕様、スタッドピッチ、 ランナのサイズをパラメータとし、合計6体とする. 試 験体1は、マッシブスタッドとマッシブランナのみで構 成し、下地材の構造特性を確認する. その他の試験体は、 せっこうボード (JISA 6901)、マッシブスタッド、マッ シブランナで構成し、複合部材としての構造特性を確認 する.

## (2) 試験体の詳細

試験体の断面形状を図-2に示す.試験体2および試 験体3は,両面張り(吉野石膏㈱耐火認定工法S12<sup>3)</sup>)で, 強化せっこうボードGB-F(t = 12.5)を両面に2枚張り する.試験体2は高さ6.55 mでスタッドピッチを@303, 試験体3は高さ7.55 mでスタッドピッチを@227.5 とす る.試験体4および試験体5は,片面張り(吉野石膏㈱ 耐火認定工法Sウォール100i<sup>4)</sup>)で,強化せっこうボー ドGB-F(t = 21)を上面に2枚張りする.試験体4は 高さ7.2 mでスタッドピッチを@303,試験体5は高さ 7.7 mでスタッドピッチを@227.5 とする.また,試験 体4および試験体5はランナでの破壊が想定されるため, マッシブランナのサイズを[-104 × 50 × 1.6 とする.

試験体6は、両面張り素地仕上(Sウォール100iの 反対側にせっこうボードを素地張り)で、強化せっこう ボード GB-F(t = 21)を下面に2枚張り、上面にせっ こうボード GB-R(t = 12.5)を1枚張りする。両面張 り素地仕上は、両面張りと同様の区画で用いることを想 定し、両方向から荷崩れを考慮する。せっこうボードの 厚さが薄い方向を上面とし、実験結果を安全側に評価す る。

#### (3) 共通事項

試験体3の平面形状を図-3に示す.マッシブラン ナとマッシブスタッドはビス等で固定を行わず, 嵌め込 むだけとする.マッシブスタッドと下張のせっこうボー ドは,ドライウォールスクリューを用いてビス留めする. 下張と上張は炭酸カルシウム系接着剤を用いて24時間 養生接着する.下張と上張の継ぎ目は一致しないように 割付ける.天井とスラブを想定したジグとせっこうボー ド端部は,施工誤差および耐火目地材の充填を考慮し, 10 mm のクリアランスを設ける.











#### 3-2 載荷・計測方法

#### (1) 載荷方法

施工時において,水平施工された試験体の下部には, パイプサポートを設けて試験体自重を支持する.実験の 第1サイクルは,パイプサポートを取り除いた自重解放 時(水平震度1G)とし,たわみを測定する.水平震度 1Gのたわみを計測後は,鉛袋を用いて2500 N/m<sup>2</sup>まで 等分布荷重載荷を行う.2500 N/m<sup>2</sup>載荷後は鉛袋を全て



図ー4 鉛袋載荷グリッド



図-5 ひずみ測定位置(側面図)



写真-1 構造実験の状況

除荷して,残留たわみを計測する.残留たわみ計測後は, 試験体が破壊に至るまで載荷を行う.

鉛袋は、JISA 4705を参考に、図-4に示す①から⑩ の順番で載荷する. 鉛袋載荷グリッドは、試験体の高さ 方向を20分割,試験体の幅方向を3分割したものとする. 自重解放時を除いて、1サイクルは10kgの鉛袋を6個 載荷するものとする. 試験体1は、上面にせっこうボー ドがないため、鉛袋載荷用の普通合板をマッシブスタッ ド上部に並べる. 普通合板は、1類2等で樹種がラワン のt9×910×1820を用いる. 普通合板とマッシブスタッ ドはビス留め等による固定を一切行わないものとする. (2) 計測方法

試験体のたわみは、支持スパン中央の変位と天井・ス ラブを想定したジグの変位の相対変位とする.マッシブ スタッドには図-5に示す通り、断面のひずみ分布を 確認できる位置にひずみゲージを貼付する.支持スパン 中央の位置,その位置から100mm離れた位置,上張せっ こうボードの継ぎ目位置を計測する.下面にせっこう ボードがない試験体1,試験体4および試験体5は、下 側フランジ面のひずみも計測する.

#### §4. 実験結果および考察

本章では、第三者機関で行ったマッシブウォール工法 の構造実験の実験結果および考察について示す、実験結 果一覧を表-4に、構造実験の状況を写真-1に示す.

#### 4-1 荷重変形関係

等分布荷重 W-たわみδ関係を図-6に示す. 試験体 1以外の試験体は,2500 N/m<sup>2</sup>以上の耐力を有すること を確認した.最大耐力は,試験体が破壊に至る前のサイ クルの値としている. 試験体2から試験体6は,圧縮領 域となる部分(圧縮領域:上面材,引張領域:下面材) のせっこうボードの拘束効果により,最大耐力,剛性, 変形性能が下地材のみの試験体1より向上している. 両 面張りの試験体2および試験体3と片面張りの試験体4

表-4 実験結果一覧

|     | 1G時(自重解放時)                |               |               | 2500N/m <sup>2</sup> 載荷時  |               |               |               | 最大耐力時                     |               |                       |                       |
|-----|---------------------------|---------------|---------------|---------------------------|---------------|---------------|---------------|---------------------------|---------------|-----------------------|-----------------------|
| 試験体 | 荷重<br>(N/m <sup>2</sup> ) | 変形            | 試験体状況         | 荷重<br>(N/m <sup>2</sup> ) | 変形            | 残留変形          | 試験体状況         | 荷重<br>(N/m <sup>2</sup> ) | 変形            | 破壊性状                  |                       |
| 1   | 114                       | 19.0<br>1/378 | たわみの他<br>異常なし |                           | -             | -             | -             | 1011                      | 181.6<br>1/39 | スタッド局部座屈<br>(支持スパン中央) |                       |
| 2   | 479                       | 16.8<br>1/389 |               |                           | 74.6<br>1/87  | 下面材せっこうボード割れ  | 2848          | 212.0<br>1/30             | スタッド局部座屈      |                       |                       |
| 3   | 510                       | 22.4<br>1/337 |               | 2500                      | 204.9<br>1/36 | 75.7<br>1/99  | (上張継ぎ目位置)     | 2907                      | 300.9<br>1/25 | <u>300.9</u><br>1/25  |                       |
| 4   | 416                       | 22.3<br>1/322 |               | 異常なし                      | 'si 2500      | 229.4<br>1/31 | 97.4<br>1/73  | たわみの他                     | 3020          | 347.7<br>1/20         | コンナ胆を砂壊               |
| 5   | 447                       | 25.6<br>1/300 |               |                           | 179.8<br>1/42 | 60.4<br>1/127 | 異常なし          | 3386                      | 349.4<br>1/22 | フンプ用き収壊               |                       |
| 6   | 531                       | 16.1<br>1/406 |               |                           |               | 126.3<br>1/51 | 43.1<br>1/152 | 下面材せっこうボード割れ<br>(上張継ぎ目位置) | 3394          | 209.5<br>1/31         | スタッド局部座屈<br>(上張継ぎ目位置) |

※表中の変形における上段はたわみ(mm), 下段は変形角(rad)とする.





写真-2 各試験体の破壊性状

および試験体5を比較すると,圧縮領域(上面材)のせっ こうボードが厚いほど,変形性能が向上している.

# 4-2 破壊性状

水平震度1Gに対して,全ての試験体がたわみの他に 異常がないことを確認した.2500 N/m<sup>2</sup>の荷重に対して, 試験体2,試験体3,試験体6は,上張継ぎ目位置の引 張領域(下面材)の下張せっこうボードにひび割れが生 じたが, 試験体1以外の試験体は重大な損傷や脱落がないことを確認した.

各試験体の破壊性状を**写真-2**に示す. 試験体1は, 支持スパン中央近傍でマッシブスタッドが局部座屈を起 こした. 両面張りの試験体2および試験体3, 両面張り 素地仕上の試験体6は,支持スパン中央近傍の上張継ぎ 目位置でマッシブスタッドが局部座屈を起こした. これ に対して,片面張りの試験体4および試験体5は,終局 時においてもマッシブスタッドが局部座屈を起こさず, マッシブランナが開く破壊性状であった.JIS 材よりも 断面性能に優れたマッシブスタッドを用いて片面張りと する場合,終局状態はランナの破壊となる.

# 4-3 マッシブスタッドの軸ひずみ分布

支持スパン中央位置,中央部上張継ぎ目位置のマッシ ブスタッドの軸ひずみ分布(試験体3)を図-7に示す. 水平震度1G時,中立軸は両者ともに概ねスタッド中心 位置である.引張領域(下面材)のせっこうボードのひ び割れ時は,両者ともに中立軸が圧縮領域側に寄ってい る.さらに荷重が大きくなった2500 N/m<sup>2</sup>載荷時の場 合,中立軸が圧縮領域側に寄った分布で軸ひずみが大き くなっている.また,支持スパン中央位置と中央部上張 継ぎ目位置の軸ひずみの大きさを比較すると,中央部上 張継ぎ目位置の方が軸ひずみが大きくなっている.

1 G 時の場合は引張領域(下面材)のせっこうボード も合成効果を発揮するが,引張領域(下面材)のせっこ うボードのひび割れ以降は,引張領域(下面材)のせっ こうボードの合成効果が小さくなると考えられる.また, 軸ひずみ分布および破壊性状(**写真-2**)より,引張領 域(下面材)のせっこうボードのひび割れ以降の曲げ応 力は,中央部上張り継ぎ目位置で最大となる.

# 4-4 マッシブスタッドの断面性能および終局耐力

(1) 断面性能

試験体1の実験結果から算出したマッシブスタッド1 本分の断面二次モーメント $I_{ex}$ および断面係数 $Z_{ex}$ を,表 -2に示した断面解析結果と比較する. $I_{ex}$ は式(1),  $Z_{ex}$ は式(2)を用いて算出する.マッシブスタッドの ヤング係数 $E_{ex}$ は,表-5に示す鋼材の素材試験結果を, 1G時のたわみ $\delta_{ex}$ は,試験体1の実験結果を用いる.

$$I_{ex} = \frac{1}{2} \cdot \frac{5 w L^4}{384 E_{ex} \delta_{ex}} \tag{1}$$

$$Z_{ex} = \frac{I_{ex}}{H/2} \tag{2}$$

w:試験体自重, L:高さ, E<sub>ec</sub>:マッシブスタッドのヤング係数(素材試験結果),  $\delta_{er}$ :1G時のたわみ(試験体1の実験結果19mm), H:マッシブスタッドのせい(100 mm)

断面性能の検証を表-6に示す.実験結果から算出 した断面性能(実験値)は、断面解析結果(解析値)よ り若干小さい.試験体1のマッシブスタッド,面材,マッ シブランナは固定されていないことから、材軸に対する ねじれの影響を受けていると考えられる.実際はビス等 で固定されることでねじれの影響は小さいと考えられる が、安全側の観点から、設計時に用いる断面性能は、実 験結果から算出した断面性能(実験値)を用いる.

## (2) 終局耐力

試験体1の終局耐力(実験値)と終局耐力(計算値)



図-7 マッシブスタッドの軸ひずみ分布(試験体3)

表-5 鋼材の素材試験結果

| 細制下掛材                 | 大大元年   | 板厚   | 降伏応力度                | 引張強さ       | ヤング係数                |
|-----------------------|--------|------|----------------------|------------|----------------------|
| <b>如何</b> 没て「「111147」 | 羽貝     | (mm) | (N/mm <sup>2</sup> ) | $(N/mm^2)$ | (N/mm <sup>2</sup> ) |
| マッシブスタッド              | SGC400 | 0.9  | 349                  | 492        | 205000               |
| マッシブランナ(t1.2)         | SGCC   | 1.2  | 269                  | 370        | 204000               |
| マッシブランナ(t1.6)         | SGCC   | 1.6  | 330                  | 400        | 204000               |

表-6 断面性能の検証

表-7 終局耐力の検証

| 断面性能の検証 | 断面二次モーメント<br>(mm <sup>4</sup> ) | 断面係数<br>(mm <sup>3</sup> ) 終局而 |  | 終局耐力の検証 | 終局耐力<br>(N/m <sup>2</sup> ) |
|---------|---------------------------------|--------------------------------|--|---------|-----------------------------|
| 実験値     | 465170                          | 9300                           |  | 実験値     | 1011                        |
| 解析値     | 514700                          | 10290                          |  | 計算値     | 964                         |
| 実験値/解析値 | 0.90                            | 0.90                           |  | 実験値/計算値 | 1.05                        |

の比較を行い,終局耐力評価の精度を検証する.マッシ ブスタッドの断面を4辺固定支持の圧縮板<sup>5)</sup>に近似す る場合,局部座屈強度は,次式で表すことができる.

$$\sigma_{u} = \begin{bmatrix} \sigma_{yex} & (R \le 0.5) \\ \{0.433(R - 0.5)^{2} - 0.831(R - 0.5) + 1.0\} \sigma_{yex} & (R > 0.5) \end{bmatrix}$$
(3)

$$R = \frac{B}{\pi t} \sqrt{\frac{12(1-v^2)}{k}} \sqrt{\frac{\sigma_{yex}}{E_{ex}}}$$
(4)

 $\sigma_u$ :鋼材の局部座屈強度,

σyex:マッシブスタッドの降伏応力度 (素材試験結果),

R :幅厚比パラメータ,

B :マッシブスタッドの幅 (45 mm), t:板厚 (0.9 mm),

v :ポアソン比 (0.3), k:座屈係数 (k ≥ 10.67)

終局耐力(計算値)は、式(3)、式(4)および既報 のLGS壁の終局耐力式<sup>2)</sup>を用いて算出する. 既報の LGS壁の終局耐力式<sup>2)</sup>におけるせっこうボードの項は 全て0として計算する. 断面性能は実験結果から算出し た断面性能(実験値)を、マッシブスタッドの降伏応力 度 $\sigma_{yex}$ および $E_{ex}$ は**表**-5に示す鋼材の素材試験結果を 用いる. **表**-7に示す通り、終局耐力(計算値)は、終 局耐力(実験値)を精度良く評価できており、安全側の 良い対応を示す.

## §5. まとめ

(1) 開発したマッシブウォール工法の構造実験を行い, 両面張りは最大 7.55 m, 片面張りは最大 7.7 m まで 2500 N/m<sup>2</sup> 以上の荷重に対応することを確認した.

- (2) マッシブウォール工法の面外終局耐力は、本報のパ ラメータの場合、両面張りはマッシブスタッドの局 部座屈で決まり、片面張りはマッシブランナの開き 破壊で決まる。
- (3) 等分布荷重が作用する場合における引張領域側せっ こうボードの合成効果は、引張領域側せっこうボー ドのひび割れ以降は期待できない.
- (4) マッシブスタッド単体において、本報の実験結果から算出した断面性能を用いれば、局部座屈で決まる 終局耐力を精度良く評価できる.

**謝辞**.本研究は八潮建材工業株式会社との共同研究とし て実施したものである.八潮建材工業株式会社には多大 なるご協力を頂きました.ここに記して深い謝意を表し ます.

## 参考文献

- 建設省大臣官房官庁営繕部監修:官庁施設の総合耐 震計画基準及び同解説, pp.38-pp.39, 1996.11
- 小寺直幸,他5名:大型鋼製下地間仕切壁工法の開発(その1:複合部材としての面外構造特性),西 松建設技報,vol.39,2016
- 3) 吉野石膏株式会社:認定番号 FP060NP-0369
- 4) 吉野石膏株式会社:認定番号 FP060NP-0360
- 5) 土木学会:座屈設計ガイドライン,丸善,2005