二重管式既製コンクリート杭(ヘッドギアパイル)工法におけ る杭頭接合部の構造性能

Structural Performance of the Pile Head Joint for Precast Concrete Pile Method Guarded with the Outer Steel Pipe to Upper Part of the Pile

郡司	康浩*	新井	寿昭*		
Yasuh	iro Gunji	Tosh	Toshiaki Ara		
竹内	章博**	岡	賢治***		
Akihiı	o Takeuchi	Kenj	i Oka		
山名	由記****				
Yuki Y	lamana				

要 約

本工法は、建物の鉛直荷重を支持する既製コンクリート杭の上部に、地震時水平抵抗部材として、 径の大きな鋼管を設置する工法である.この鋼管に、地震時水平力の一部を負担させることで、建物の 鉛直荷重を支持する既製コンクリート杭の、特に杭頭部の曲げモーメントおよびせん断力を低減でき、 耐震性を向上させることが可能になる.

本報では、本工法の杭頭接合部について、構造性能確認実験および有限要素法解析により確認した構 造性能の詳細について報告する.

目 次

§1. はじめに

- §2. 工法概要
- §3. 構造性能確認実験
- §4. 有限要素法解析
- §5. おわりに

§1. はじめに

近年の既製コンクリート杭(以下,既製杭)は,高支 持力化が図られたことにより,従来よりも荷重の大きな 建築物への適用が拡大し,それに伴って杭の水平力負担 も増加している.建築物を安全に支持するためには,水 平力に対する性能確保も重要となることから,筆者らは 既製杭の,特に杭頭部の耐震性能を向上させることが可 能な工法を開発し,既報^{例えば1)~7)}にて報告している.

本報では、工法概要を述べるとともに、本工法の杭頭 接合部の構造性能について、構造性能確認実験^{3)~5)}およ

***** 技術研究所建築技術グループ(現:建築設計部)

び三次元有限要素法解析^{6)~7)}にて確認した結果について 報告する.

§2. 工法概要

本工法の概要を図-1に示す.本工法は,建物荷重を 鉛直支持する既製杭(以下,本杭)の頭部に,本杭径よ りも大径の鋼管(以下,外管)を被せるように設置し(以 下,二重管杭),この外管に水平力の一部を分担させるこ とで,本杭の水平力分担を低減する工法である.外管を 設置することにより,本杭頭部の曲げモーメントおよび せん断力を低減できることから,本杭の耐震性能を向上 させることができる.

また、本工法は図ー1に示す二重管部(本杭と外管が 重なり、ソイルセメントが充填される部分)の許容応力 度設計における水平力分担について、本杭および外管の 構造安全性評価の妥当性に関して第三者機関から一般評 定を取得している.本工法の適用範囲の詳細等は、既報²⁰ を参照されたい.

本工法では、本杭および外管の頭部に定着筋を配置す るとともに、両者をパイルキャップ内に埋込むことから、 定着筋の引張圧縮抵抗や杭側面部の支圧抵抗などが、在 来工法とは異なる挙動を示す可能性が考えられる.そこ

^{*} 技術研究所建築技術グループ

^{**} 建築設計部構造一課(現:構造二課)

^{***} 関東建築(支)建築設計部

で、二重管杭の杭頭接合部の挙動を把握するため、構造 性能確認実験および有限要素法解析を実施した.

§3. 構造性能確認実験

3-1 実験概要

二重管杭の杭頭接合部の構造性能を確認するため、構 造性能確認実験を実施した.

試験体の概要を図-2に、実験パラメータの一覧を 表一1 に示す. 試験体は、本杭および外管に定着筋を配 置し、パイルキャップへの埋込み長が本杭で 550 mm, 外 管で 300 mm である No.3 を二重管杭の標準とし、二重管 杭の各パラメータを変更した試験体(No.2:本杭・外管 ともに定着筋無し、No.3-2:本杭軸力無し、No.4:外管 径大, No.5:本杭の埋込み長が短い)を設定した.また, 比較のため本杭のみの No.1 も準備した. 試験体総数は6 体である.本杭は ϕ 500 mm の SC 杭,外管は ϕ 800 mm の鋼管を基本とし、外管径を大きくした No.4 では φ 1.000 mm の鋼管を使用した. 試験体に用いた材料の試験 結果を表一2に示す.

載荷装置の概要を図-3に示す.載荷は鉛直ジャッキ にて本杭に圧縮軸力(1,600 kN. No.3-2 は無し)を載荷 後、本杭および外管に接続したアクチュエーターを用い て,水平力を片持ち梁形式の正負交番繰返し載荷で与え る形式で行った.なお.軸力は定荷重保持装置を用いて 一定に制御した.水平載荷は、定着筋が降伏に至るまで の範囲を荷重制御方式で、それ以降は本杭および外管の 部材角が同一となるように変位制御方式で行った.

各試験体の載荷目標荷重・部材角の一覧を表-3に示 す.荷重制御範囲では、既報¹⁾で示している原位置水平 載荷実験におけるせん断力分担割合を模擬できるように. 原則として本杭と外管の荷重分担率(全水平荷重に対す る本杭と外管の分担割合)を2:8~5:5となるように制 御した.具体的な載荷順序としては、外管を所定の荷重 まで載荷した後、本杭の荷重を所定の荷重分担率となる ように漸増させる形で実施した.また、除荷はその逆順 とした.変位制御範囲では、本杭および外管の目標部材 角まで外管,本杭の順で載荷した.

3-2 実験結果

(1) 荷重制御範囲(定着筋降伏まで)

標準試験体である No.3 の本杭および外管の載荷点水 平荷重 (P1:本杭, P2: 外管) と部材角 (R1:本杭, R2: 外管)の関係(荷重制御範囲)を図-4に示す.なお,部 材角は載荷点の水平変位を載荷点高さ(本杭:2,000 mm, 外管:1.100 mm) で除した値である.

図-4を見ると、本杭は概ね弾性的で安定した挙動を 示しており、定着筋の降伏が生じた時点の部材角はR1 =-12/1000 rad. であった. 外管は、各サイクルのピーク 荷重時に部材角の進行が見られるが、これは外管を載荷

表一1 実験パラメーター覧

学齢体		++ z	本杭		外管		ed at the and	
ii八i映1本 No	タイプ	主たる パラメータ	径 (mm)	埋込み (mm)	径 (mm)	埋込み (mm)	平面寸法(mm)	
No. 1	単杭	本杭のみ			-	-	1250×1250	
No. 2		定着筋なし						
No. 3		標準	500	550	800		$1600\!\times\!1600$	
No. 3-2	二重管	本杭軸力なし	500			300		
No. 4		外管径:大			1000		1800×1800	
No. 5		本杭埋込み:短		400	800		1600×1600	

※1:本杭は全てSC杭。定着筋は8-D22
 ※2:外管はSKK490。定着筋は12-D32。No.4のみ12-D29
 ※3:定着方法は、No.2を除いて「埋込み+定着筋」.No.2は「埋込みのみ」

表一2 材料試験結果

Steel			$\sigma_{\rm v}({\rm N/mm}^2)$	$E(\times 10)$	$^{5}N/mm^{2})$
鋼管 (SKK490)		t=12(本杭)	446	2.	07
		t=16(外管)	386	2.	10
(3	MR430)	t=19(外管)	393	2.11	
鉄筋		D16 (SD295A)	351	1.86	
		D22(SD345)	374	1.91	
		D29(SD390)	418	1.91	
		WD32(SD390)	463	1.91	
	CON	$E(\times 10^4 N/mm^2)$	$\sigma_{\rm B}({\rm N/mm}^2)$	$\sigma_{\rm t} ({\rm N/mm}^2)$	ポアソン比
杭	CON SC杭	$\frac{\text{E}(\times 10^4 \text{N/mm}^2)}{4.63}$	σ _B (N/mm ²) 129.9	$\sigma_{\rm t}({\rm N/mm}^2)$ -	ポアソン比 -
杭	CON SC杭 No.1	$\frac{E(\times 10^{4} \text{N/mm}^{2})}{4.63}$ 3.07	σ _B (N/mm ²) 129.9 31.2	σ _t (N/mm ²) - 2.11	ポアソン比 - 0.192
杭キい。	CON SC杭 No.1 No.2	$\frac{E(\times 10^{4} \text{N/mm}^{2})}{4.63}$ $\frac{3.07}{3.22}$	$\sigma_{\rm B} ({\rm N/mm}^2)$ 129.9 31.2 34.2	σ _t (N/mm ²) - 2.11 2.48	ポアソン比 - 0.192 0.174
杭 キャイ	CON SC杭 No.1 No.2 No.3	E(×10 ⁴ N/mm ²) 4.63 3.07 3.22 3.29	$\frac{\sigma_{\rm B} (\rm N/mm^2)}{129.9}$ 31.2 34.2 35.2	$\frac{\sigma_{\rm t} (\rm N/mm^2)}{-}$ 2.11 2.48 2.48	ポアソン比 - 0.192 0.174 0.187
杭 キャッ	CON SC杭 No. 1 No. 2 No. 3 No. 3-2	E(×10 ⁴ N/mm ²) 4.63 3.07 3.22 3.29 3.30	$ \begin{array}{c} \sigma_{\rm B}({\rm N/mm}^2) \\ 129.9 \\ 31.2 \\ 34.2 \\ 35.2 \\ 35.3 \end{array} $	$\begin{array}{c} \sigma_{\rm t}({\rm N/mm}^2) \\ \hline \\ - \\ 2.11 \\ 2.48 \\ 2.48 \\ 2.48 \\ 2.46 \end{array}$	ポアソン比 - 0.192 0.174 0.187 0.215
杭 キャップ	CON SC杭 No. 1 No. 2 No. 3 No. 3-2 No. 4	$\frac{E(\times 10^{4}N/mm^{2})}{4.63}$ $\frac{4.63}{3.07}$ $\frac{3.22}{3.29}$ $\frac{3.30}{3.40}$	$\begin{array}{c} \sigma_{\rm B} ({\rm N/mm}^2) \\ \hline 129.9 \\ 31.2 \\ 34.2 \\ 35.2 \\ 35.3 \\ 34.0 \end{array}$	$\frac{\sigma_{\pm}(\text{N/mm}^2)}{-}$ 2.11 2.48 2.48 2.46 2.32	ポアソン比 - 0.192 0.174 0.187 0.215 0.195

後、荷重を保持し本杭の載荷を行った影響である.

荷重分担率が5:5時点における、各試験体の本杭およ び外管の載荷点水平荷重 – 部材角関係を包絡線として 図-5 に示す.本杭は、R1=2.5/1000 rad.まで No.3-2 を 除く全ての試験体で同様の挙動を示した. それ以降の部 材角では、No.2 と No.5 が No.1 と似た挙動を示した. ま た、No.3 と No.4 の剛性は No.1 を上回っており、両試験 体の挙動はよく似た性状を示した.外管の部材角は、各 試験体でばらつきがみられるが、R2=1.8/1000 rad. 以降 で No.3 と No.4 は同様の挙動を示した.

各試験体の本杭定着筋降伏時の荷重一覧を表-4に示 す. No.3 と No.4 の本杭定着筋降伏時荷重は、No.1 と比 較して約40%増加しており, No.1以上の降伏耐力を有 していることが確認できた. No.3 と No.4 を比較すると, 本杭定着筋降伏時荷重は概ね同等であり、外管径の違い による顕著な影響は認められなかった.また, No.3と比 較して、本杭定着筋降伏時荷重は No.3-2 で約 25%, No.5 で約35%低下する結果となっており、本杭定着筋降伏時 荷重には、軸力および埋込み長による影響があることが 確認できた.

(2) 変位制御範囲(定着筋降伏以降)

変位制御範囲における本杭および外管の載荷点水平荷 重-部材角関係を包絡線として図-6に示す.本杭では, R1=約10/1000 rad. まで全ての試験体で概ね同じ様な 挙動を示していたが、それ以降で試験体毎に挙動の違い が見られた. No.3 および No.4 は、載荷終了まで安定的 な挙動を示し、最大荷重も No.1 と比較してほぼ同等で あった.一方, No.5 は R1=約 10/1000 rad. 以降で荷重 が上がらず、変形のみが増大する挙動であった. No.2 で は R1=約25/1000 rad. で最大荷重となり、それ以降で荷 重が低下し最終的には最大荷重の約60%の荷重まで低 下した. No.3-2 では, R1=約 30/1000 rad. で最大荷重と なり、その後最大荷重の約80%の荷重まで低下する挙動 であった.これらより、定着筋が降伏した後の本杭の挙 動についても、軸力や定着筋、埋込み長による影響があ ることが確認できた.

外管は, R2=約4/1000 rad. まで全ての試験体で概ね 同様の挙動となっていたが、それ以降で試験体毎に違い が見られた. No.2 以外は、載荷終了まで大きな荷重低下 が見られず安定的な挙動であった.一方, No.2 は R2= 約 4/1000 rad. 以降で荷重が上がらず,変形のみが進行す る挙動となっていた。

本杭の軸力と部材角の関係を図一7に示す. 図一7に

表-3 載荷目標荷重・部材角--覧

試験体			No. 1	No. 2	No. 3	No. 3-2	No. 4	No	. 5
		区分:	本杭	本杭 外管 共通	本杭 外管 共通	本杭 外管 共通	本杭 外管 共通	本杭	外管
荷重 初期サイクルピーク 荷重(kN):		50	50	50	50	50	75	70	
刑仰 範囲	最	終サイクルピーク 荷重(kN):	400	250	650	450	650	400	450
変位	<u>変位</u> 数期サイクルピーク: 部材角(1/1000rad)		10	10	5	5	10	1	0
刑仰 範囲	最終	&サイクルピーク: 『材角(1/1000rad)	45	40	45	45	45	3	0
載荷点水平荷重(kN)	700 350 0 -350 -700 _2	本杭 20 -10 0 本杭部材角RI(1	× 定着 10 1/1000ra	1 	-10	小管 -5 小管部材	0 角R2(1)	5 /1000rad	10
載荷点水平荷重(kN)	700 6000 5000 4000 2000 1000 0 0	図-4 載何 本杭 3 6 9 本杭部村角RI(1 -5 載荷点水 ²	ペー・ No No No No No No No No No No	何里一 / □ 1 · 2 2 · 3 3 · 2 4 · 5 15) 一部材		月 (月) 月 月 月 月 月 月 月 月	(NO.、 3 角R2(1/1 重制御	5) 	-2

表一4 本杭定着筋降伏時荷重一覧

学齢な	· 荷重 · 制御	載荷点荷重(kN)			比率(本杭,絶対値)		
		本杭P1	本杭P2	合計	各No/No.1	各No/No.3	
No. 1		434.7	-	434.7	-	0.72	
No. 2		-	-	-	-	-	
No. 3		-601.7	-599.8	-1201.5	1.38	1.00	
No. 3-2	単凸 [21]	452.1	450.2	902.3	1.04	0.75	
No. 4		-600.2	-600.3	-1200.5	1.38	1.00	
No. 5		392.7	450.4	843.1	0.90	0.65	

※No.2は定着筋な1

は、前サイクルの R1 を更新した点のみプロットした. 図-7より、載荷終了まで軸力を概ね精度よく制御でき ていたことを確認した.また,軸力の急激な低下等は生 じておらず、比較的大きな変形の領域まで軸力保持能力 があることを確認した.

§4. 有限要素法解析

4-1 解析概要

構造性能確認実験の事後評価と,実験では確認できな かったパラメータによる影響を確認するために三次元有 限要素法解析を実施した.

解析は二段階に分けて実施した.まず,第一段階とし て解析モデルの妥当性確認と,解析における杭頭接合部 の基本的性状を把握するため,一方向載荷による解析を 実施した.次に,第二段階として実験と同様の正負交番 載荷による解析を実施して実験結果をシミュレートする とともに,実験では実施できなかったパラメータについ ても検討を行った.

一方向載荷では、構造性能確認試験のパラメータのうち、紙面の都合上、特に二重管杭の標準である No.3 と、 比較のための No.1 (本杭のみ)の検討結果について述べる. 正負交番載荷では、特に軸力による影響を確認するため、No.3 (本杭軸力 N=1,600 kN) および No.3-2 (N=0 kN)の解析に加えて、実験では実施できなかった引張軸力(N=-400 kN)が作用した場合の性状について、No.3-3 として検討を行った結果についても述べる.

4-2 解析モデル

(1) 共通条件

モデル化等について、一方向載荷と正負交番載荷では 一部異なる箇所があるため、両解析で共通な条件と各解 析で特有な条件に分けて以下に記載した. 解析モデルの 概要を図-8に示す.解析モデルは、載荷方向と形状の 対称性を考慮して1/2対称モデルとした.境界条件は, 底面固定, Y 方向変位拘束とした. モデル化について, ス タブ,パイルキャップ部はソリッド要素で、本杭および 外管はシェル要素でモデル化した, 定着筋については, ト ラス要素でモデル化した.本杭,外管および定着筋とパ イルキャップコンクリートの界面には、インターフェイ ス要素を配置し付着すべりによる影響を考慮した. 材料 モデルについて、コンクリートには分散ひび割れモデル を採用し、履歴特性について圧縮側では修正 Ahmad モ デル⁸⁾とした.引張側については、ひび割れが発生する までは弾性剛性とし、ひび割れ発生後は鉄筋の付着によ る引張応力負担をテンションスティフニングとして考慮 した. 鉄筋は、修正 Menegotto-Pinto⁹⁾ を用い、包絡線は バイリニアを仮定し、降伏後の剛性は弾性剛性の 1/1000 とした. 鋼材とコンクリートの付着は、文献¹⁰⁾を参考に 設定した. 杭頭定着筋の付着特性は、CEB-FIP モデルコ ード 1990 を用いた. 解析に用いる材料特性には, 原則と して表-2に示す値を用いているが、正負交番載荷のモ デルでは統一して No.3 の材料特性を用いている.

(2) 一方向載荷特有の条件

パイルキャップ内の鉄筋について一方向載荷のモデル では、ソリッド要素内の分散埋込み鉄筋としてモデル化

し,配筋方向毎に鉄筋比を指定することで考慮した.一 方向載荷では,解析での基本的な性状を把握するため,構 造性能確認実験における荷重制御範囲(概ね,短期許容 (定着筋降伏)レベルまで)での比較を実施した.

解析は、本杭に圧縮軸力(1,600 kN)を載荷後、水平 載荷を実施した.手順としては、外管を所定荷重まで載 荷後保持し、次に本杭と外管の荷重分担率が最終的に 5:5になるように本杭の荷重を漸増させた.その後、外 管の荷重を増加させ前述の載荷方式を繰返し実施した. (3) 正負交番載荷特有の条件

正負交番載荷のモデルでは、パイルキャップ内鉄筋の 状態をより明確に把握するため、トラス要素でモデル化 するように修正を行った.この変更に伴って、正負交番 載荷のモデルは一方向載荷のモデルと比較して、ソリッ ド要素の分割を細かくしている.正負交番載荷時の繰返 し応力下における材料の履歴特性として、コンクリート は曲線で表現するモデル¹¹⁾とし、鋼材は移動硬化則を適 用して再載荷時は弾性剛性とした.解析は、原則として 構造性能確認実験と同様の載荷ルールで実施した.

4--3 解析結果

(1) 一方向載荷

荷重制御範囲で、本杭と外管の荷重分担率が5:5時点の本杭および外管の載荷点水平荷重-杭頭回転角関係を

実験結果と比較して包絡線として図一9に示す.ここで, 解析における杭頭回転角は,杭頭部(パイルキャップ上 面近傍)の杭要素 Z 方向変位の差を杭径で除した値であ り,実験は同位置に設置した変位計の値を基に算定した 値である.

図-9を見ると、モデル化の基本となる No.1の解析値 と実験結果はよく対応しており、本検討における基本的 なモデル化は概ね妥当と考えられる.一方、今回の検討 では、定着筋の降伏について圧縮鉄筋が先行して降伏す る(実験では、引張鉄筋が先行)結果となった.実験結 果と解析値で差が生じている No.3 の本杭については、 前述の鉄筋降伏性状の違いによる影響もあるものと考え られる.

杭頭せん断力が同一(本杭:200 kN,外管:200 kN, 合計 400 kN. No.1 は単杭で 400 kN)時点における,パ イルキャップの載荷方向(X方向)応力コンター立面図 を図-10 に示す.図-10 は対称面を Y方向から見てお り,本杭および外管の要素は表示していない.図-10 を 見ると,二重管杭として比較的荷重の小さい範囲ではあ るが,単杭と比較すると載荷方向の応力分布に違いが見 られ,No.1 では本杭の載荷前面側のパイルキャップ上部 付近で圧縮応力が大きくなっているのに対して,No.3 で は本杭と外管の間の部分で圧縮応力が大きくなっていた. この要因の一つとして,図-9 を見ると No.3 では同一荷 重時の杭頭回転角が,本杭よりも外管の方が小さくなっ ており,その影響で当該部分が No.1 よりも拘束されて いる影響もあると考えられる.

(2) 正負交番載荷

パイルキャップ上面における本杭および外管の曲げモ ーメント(杭頭 M)と杭頭回転角(θ)の関係を図ー 11, 12に示す.荷重制御範囲(定着筋降伏まで)では, 軸力に関係なく本杭,外管ともに実験よりも解析のほう が杭頭の回転剛性が若干小さい結果となっていた.これ は,解析において定着筋溶接部による抵抗の効果までモ デル化できていないことも一因と考えられる.図-11中 に示した定着筋の降伏時期は,本杭,外管ともに解析の ほうが若干早く,実験よりも小さな荷重で降伏に至って いるが,概ね対応した結果となっていた.

変位制御範囲における実験の本杭は, $\theta = \pm 5/1000$ rad. で一旦杭頭 M が低下し, その後上昇傾向となって定着筋 降伏時の杭頭 M まで回復しているが, 解析では実験値を 若干下回っている. この本杭杭頭 M の一時的な低下は, 実験時の制御において本杭と外管の部材角を同一になる ように制御した結果, 外管に拘束された本杭が一緒に回 転したことの影響による.実験での外管の杭頭 M は定着 筋降伏後もそのまま $\theta = \pm 20 \sim 30/1000$ rad. まで杭頭 M を維持しているが, 解析では $\theta = \pm 10/1000$ rad. 以降で杭 頭 M の低下が顕著であり, また θ が実験よりも大きく増 加している.

これらの結果より、大変形時の外管の挙動の対応はよ

5

くないが,全体的に解析は実験結果をよく説明しており, 本解析手法で二重管杭の杭頭接合部の挙動をある程度評 価できると考えられる.

引張軸力を作用させた No.3-3 も含め, 全解析ケースの 杭頭 M- θ 関係を図ー13 に示す.本杭は, 軸力が小さいと 定着筋降伏時期が早くなり, $\theta = \pm 5/1000$ rad. 以降の

挙動に不安定さが見られる.外管は,定着筋降伏時期 に違いが見られるものの,解析による杭頭 M-θ 関係は本 杭軸力の影響を殆ど受けていないように見受けられる. 実験においても, No.3 と No.3-2 の外管の挙動の違いは 本杭ほど大きくなかった.

図-14 に本杭軸力 N=1600 kN,-400 kN の場合の本杭 定着筋降伏時におけるパイルキャップの最小主応力分布 を示す.外管の内外でコンクリートの要素が連続してい ないため,定着筋が降伏する荷重レベルでは外管を境界 に応力が不連続となっている.軸力が大きい場合には,本 杭,外管の端部付近で圧縮応力が最大となり,本杭と外 管に挟まれた部分の応力は比較的小さい.引張軸力の場 合は,本杭端部の応力は小さく,本杭外管間の圧縮応力 が大きくなるが,荷重レベルが小さいこともありコンク リート強度の半分以下にとどまっている.

§5. おわりに

二重管杭の杭頭接合部の構造性能について,構造性能 確認実験を実施し,本杭の性状には在来工法と同様に軸 力,定着筋の有無,埋込み長の長短による影響があるこ とを確認した.また,本工法の標準的な杭頭接合部につ いて,比較的大きな変形領域まで安定した変形性能,軸 力支持能力を有していることを確認した.

構造性能確認実験結果のシミュレートと,実験で実施 できなかったパラメータに対する検討を実施するため三 次元有限要素法解析を実施し,本報で示したモデル化手 法で二重管杭の杭頭接合部の挙動をある程度評価できる ことを示した.更に,実験で実施できなかった引張軸力 下における杭頭接合部の挙動について,本杭では在来工 法と同様に引張軸力による挙動への影響が確認されたが, 外管への影響は小さいことなどを確認した.

なお,本工法は西松建設,安藤・ハザマ,熊谷組,ト ーヨーアサノ,三谷セキサンの5社による共同研究で開 発したものである.

参考文献

- 新井他:二重管式既製コンクリート杭(ヘッドギア パイル)工法の開発,西松建設技報, VOL 40, 2017
- 2) 郡司他:二重管式既製コンクリート杭(ヘッドギア パイル)工法の概要と設計,西松建設技報,VOL. 41,2018
- 3) 山名他:杭上部に外管を有する既製コンクリート杭 工法の開発 その5 杭頭接合部の構造実験,日本

(本杭定着筋降伏時)

建築学会大会学術講演梗概集(九州), pp. 753-754, 2016.8

- 4) 崎浜他:山名他:杭上部に外管を有する既製コンク リート杭工法の開発 その6 杭頭接合部の構造実 験結果,日本建築学会大会学術講演梗概集(九州), pp. 755-756, 2016.8
- 5) 郡司他:杭上部に外管を有する既製コンクリート杭 工法の開発 その10 杭頭接合部の構造実験結果 の検証,日本建築学会大会学術講演梗概集(中国), pp. 481-482, 2017.8
- 6)郡司他:杭上部に外管を有する既製コンクリート杭 工法の開発 その11 杭頭接合部の三次元有限要 素法解析(一方向載荷),日本建築学会大会学術講演 梗概集(東北),pp.661-662,2018.9
- 7)西他:杭上部に外管を有する既製コンクリート杭工 法の開発 その12 杭頭接合部の三次元有限要素 法解析(正負交番載荷),日本建築学会大会学術講演 梗概集(東北),pp.663-664,2018.9
- 8)長沼洋一:三軸圧縮下のコンクリートの応力~ひずみ関係,日本建築学会構造系論文集,第474号,pp. 163-170,1995.8
- Ciampi, V., et al : Analytical Model for Concrete Anchorages of Reinforcing Bars Under Generalized, Report No UCB/EERC-82/23, Univ of California, Berkley, Nov., 1982
- 10) 松浦他:鋼板とコンクリートの付着特性に関する基礎的検討,日本建築学会学術講演梗概集,構造Ⅱ, pp. 1037-1038, 2005.9
- 11)長沼洋一,大久保雅章:繰返し応力下における鉄筋 コンクリート板の解析モデル,日本建築学会構造系 論文集,第536号,pp.135-142,2000.10