木造建築物の 2016 年熊本地震に対する挙動 振動台実験 Shaking Table Test of Wooden Construction against 2016 Kumamoto Earthguake

竹内 章博*	山崎 康雄*
Akihiro Takeuchi	Yasuo Yamasaki
金川 基*	高橋 孝二**
Motoi Kanagawa	Koji Takahashi

要 約

近年,熊本地震をはじめとした震度7規模の地震が頻発しており,木造建築物においても,いかにして耐震性能を確保するかが重要な課題となっている.

本報では、2 階建ての実大木造建築物に対して、2016 年に発生した熊本地震の前震、本震を連続入力 した振動台実験および時刻歴応答解析を行い、木造建築物の地震時挙動についての検証を行った. さら に、木造建築物に制振装置を組込んだ場合のシミュレーション解析を行い、制振効果について検討を行 ったので報告する.

- 目 次
- §1. はじめに
- §2. 実験概要および解析概要
- §3. 実験結果および解析結果
- §4. 制振ダンパーの解析的検討
- §5. おわりに
- §1. はじめに

近年,地球環境問題に対する社会的な関心の高まりに より,カーボンニュートラルな素材である木造に注目が 集まっている.一方で日本は地震大国であり,木造建築 物においても,いかにして耐震性能を確保するかが重要 な課題となっている.

そこで本報では, 熊本地震前震と本震を連続入力した 実大木造建築物の振動台実験および時刻歴応答解析を行 い,木造建築物の地震時挙動の検討を行った. さらに, 制 振装置を組込んだ場合のシミュレーション解析を行い, 制振効果について検討を行ったので報告する.

§2. 実験概要および解析概要

2-1 試験体概要

図-1 に試験体の1階伏図を,図-2にY1,Y5通りの 軸組図を示す.また写真-1に試験体の外観を示す.

- * 技術研究所建築技術グループ
- ** 技術研究所

写真一1 試験体外観

試験体は1階の階高が2,883 mm,2階が2,730 mmの 在来軸組工法による箱型2層の木造建築物である.平面 は5,460 mm×3,640 mmである.

試験体の耐力壁は,厚さ9mmの構造用合板をN50釘, ピッチ150mmで打った告示壁倍率2.5倍の仕様とし,1 階には同耐力壁を10P,2階には8Pを配置している.

実験に用いた軸組は, 土台と柱は 105 mm×105 mmの スギ製材, 大梁は 2 階が 105 mm×270 mm, 屋根が 105 mm×180 mmのベイマツ製材である. 柱梁接合部につい ては, 必要に応じて HD 金物を設置し, 引抜力に対応し ている. また水平構面には各階ともに 24 mmの構造用合 板を張っている.

試験体の重量は,耐震等級3相当の建築物を想定し,1 階が41.54 kN,2 階が28.62 kN としている.

計測は、各階床の加速度、層間変位について行った.

2-2 入力地震動

実験は愛川技術研究所の振動台にて行った.

地震動は中小地震を想定した BCJ-L1 の 50%入力およ び益城町宮園での観測波(以降,熊本地震前震),KiKnet 益城町での観測波(以降,熊本地震本震)の順番で 連続入力した.**表**-1 に入力した熊本地震の地震動を示 す.入力は試験体の X 方向を EW 成分,Y 方向を NS 成 分とし,X 方向,Y 方向,Z 方向の 3 軸同時加振とした.

	方向	最大加速度	最大速度	最大変位
		[cm/s ²]	[cm/s]	[cm]
熊本地震前震	EW	717	132	26
(益城町宮園)	NS	602	103	17
	UD	317	14	2
熊本地震本震	EW	983	137	27
(KiK-net益城町)	NS	671	91	16
	UD	817	38	7

表一1 入力地震動

2--3 解析概要

図-3 に解析モデル図を示す. 解析モデルは2 質点系の振動解析モデルとし,構造用合板耐力壁と柱をせん断 ばねとして入力した. 解析は,弾塑性解析プログラム (SNAP Ver.7:(㈱構造システム)を使用して行った.

図-4 に解析で用いた試験体の構造用合板耐力壁 1 m あたりの骨格曲線及び復元力特性を示す.構造用合板耐 力壁の骨格曲線は、「木造軸組工法住宅の許容応力度設計 (2017 年版)¹⁾」に記載されている構造用合板張り大壁耐 力壁(告示壁倍率 2.5 倍)の試験結果を参考とした.復 元力特性には木造用 4 折線 NCL モデル^{2.3)} を用いた.

図-5には,解析で用いた試験体の柱1本あたりの骨格曲線及び復元力特性について示す.柱の骨格曲線は,独立行政法人防災科学技術研究所の提案資料⁴⁾を参考として設定した.また復元力特性には木造用強度低下4折線 モデル Wayne-stewart モデル⁵⁾を用いた.

解析は実験と同様に,熊本地震前震,本震の順番で連 続加振して行う.なお,時刻歴応答解析結果が,実験結 果に適合することを条件として,復元力モデルの載荷勾 配と除荷勾配を試行錯誤的に調整した.また,解析モデ ルにおける減衰定数は瞬間剛性比例型2%とした.

§3. 実験結果および解析結果

3-1 実験結果

以下では, 熊本地震前震および本震を連続加振した実 験結果について示す.

(1) 最大層間変位および最大層間変形角

表-2に試験体X方向およびY方向の各階最大層間 変位と最大層間変形角について示す.

最大層間変位は、Y方向(NS成分)に比べてX方向 (EW成分)で大きな値を示した.また、X方向の1階の 最大層間変形角は、前震で1/47、本震で1/19となり、本 震の最大層間変形角は前震の2倍以上の値となった.

(2) 荷重-変位関係

図-6に試験体X方向およびY方向の各階荷重一変 位関係について示す.

BCJ-L1 の 50%入力は変形が極めて小さく, ほとんど 履歴を描いていないことが分かる.

熊本地震の場合,X方向はY方向に比べて変形が大き い.また,木造特有のスリップ型の履歴特性が明確に認 められ,変形が進むにつれて履歴面積が減少する傾向が 見られた.また,X方向の1階については,本震の場合, 前震を受けた際の変形に起因する剛性低下を受けて,さ らに大きな変形に至る現象が確認された.

(3) 損傷状況

写真-2(a)に前震の1階壁頭部および2階壁脚部の 構造用合板耐力壁の損傷状況を示す.また,同写真(b) に本震の場合を示す.

前震,本震の場合とも,2階の耐力壁には大きな損傷 は見られなかった.一方,1階の耐力壁については,前 震の場合,X方向で1/47の層間変形角が発生したことも あり,合板に浮きが出ている状況が確認された.また,本 震の場合,X方向で1/19の変形角が発生したこともあり, 耐力壁に大きな損傷が生じ,釘が浮いている状況も確認 された.

図-7に試験体の1次固有周期の推移を示す.

加振前は 0.2 秒程度であったのに対し,前震,本震と 入力を受けるにつれて躯体が損傷し,長周期化している ことが分かる.本震を受けた後は,約1秒と加振前に比 べて約5倍も周期が伸びていることが確認された.

表一2 最大層間変位と最大層間変形角

X方向	BCJ-L1 50%	熊本地震前震	熊本地震本震
2 階	0.5 (1/5460)	25.0 (1/109)	38.3 (1/71)
1 階	2.9 (1/994)	61.0 (1/47)	151.8 (1/19)
		-	
Y方向	BCJ-L1 50%	熊本地震前震	熊本地震本震
2 階	0.7 (1/3900)	22.6 (1/121)	15.9 (1/172)
1 階	1.0 (1/2883)	47.9 (1/60)	65.3 (1/44)
単位:mm および rad		()内は最大	層間変形角

(a)熊本地震前震

(b)熊本地震本震

写真-2 1 階壁頭および2 階壁脚の損傷状況

3-2 実験結果と解析結果の比較

以下では,層間変位の大きかった試験体のX方向について,実験結果と解析結果の比較を示す.

図-8(a)に熊本地震前震の,各階の荷重一変位図を, 同図(b)には各階床の応答加速度の時刻歴波形を,同 図(c)には各階の層間変位の時刻歴波形を,それぞれ 実験結果と解析結果を比較して示す.また,図-9には 同様にして本震の場合を示す.

解析結果は実験結果と概ね一致しており,特に荷重-変位図については,木造特有の変形が進むにつれて剛性 が低下する履歴特性が良く説明されている.

また,前震を受けて構造用合板耐力壁が剛性低下した 後,さらに本震を受けた場合の履歴特性も良く説明され ている.なお,R階の床応答加速度の値は,前震,本震 の場合とも約2000 gal 程度と大きな値になっているこ とが分かる.

(c)層間変位の時刻歴波形図-9 熊本地震本震の実験結果と解析結果

表一3 最大層間変位と最大層間変形角

2階

X方向	熊本地震前震	熊本地震本震
実験値	25.0 (1/109)	38.3 (1/71)
解析值	31.7 (1/86)	42.3 (1/64)
	-	

1階

X方向	熊本地震前震	熊本地震本震
実験値	61.0 (1/47)	151.8 (1/19)
解析值	64.1 (1/45)	139.0 (1/21)

単位:mmおよびrad()内は最大層間変形角

表一3に各階の最大層間変位および最大層間変形角の 値を実験結果と解析結果を比較して示す.

解析結果は実験結果と概ね一致しており,特に前震を 受けた後の,本震時の層間変形角が1/20あたりである ことも実験結果と良く一致していることが分かる.

4

§4. 制振ダンパーの解析的検討

本章では,前章で実験結果と比較して検証した木造建 築物の振動解析モデルに,制振ダンパーを組込んで解析 を行い,その制振効果について検討を行う.

表一4 制振ダンパーの性能(単位 kN)

Ру	2/3Pmax	P1/120	0.2Pu/Ds
13.28	20.17	8.27	9.56

4-1 制振ダンパーの解析モデル概要

図-10 (a) に解析で用いた制振ダンパー⁶⁾の荷重-変位曲線を,同図 (b) にモデル化した制振ダンパーの 骨格曲線および復元力特性を示す.

制振ダンパーは,高減衰ゴムを利用した粘弾性ダンパ ーとする.

解析モデルは、2章の解析概要で示した2質点系の振動解析モデルとし、図-10に示した制振ダンパーを1階 部分に設置したモデルとする.

制振ダンパーの骨格曲線は荷重一変位曲線を包絡する 様に設定した.復元力特性については木造用4折線 NCL モデルを用い,各変位時の等価減衰定数が概ね一致する ように設定した⁷⁾.

表-4には制振ダンパーの荷重一変位曲線から算出した壁倍率評価の4つの指標について示す.

制振ダンパーの耐力は層間変形角 1/120 時点の値で 決定されており, 壁倍率としては, 4.6 倍相当の性能となっている.

4-2 解析結果

以下では,層間変位の大きかった試験体 X 方向につい ての解析結果について示す.

図-11 (a) に熊本地震前震の,各階の荷重一変位図 を,同図 (b) には各階床の応答加速度の時刻歴波形を, 同図 (c) には各階の層間変位の時刻歴波形を,それぞ れ制振ダンパーがある場合(以降,制振)と,無い場合 (以降,耐震)とで比較して示す.また,図-12には同 様にして本震の場合を示す.

応答変位の値は、制振の場合、耐震に比べて大きく低 減していることが分かる.また、各層の荷重一変位関係 より、制振の場合は、耐震の場合に比べて剛性低下が抑 制されていることが分かる.

4-3 制振ダンパーの効果

表一5 に各階の最大層間変位および最大層間変形角の 値を、制振の場合と、耐震の場合で比較して示す。

最大層間変形角の値は、制振の場合、耐震に比べて半 分程度に低減されていることが分かる.特に1階の最大 層間変形角の値は、本震時の値が、耐震の場合1/21と 1/30を超えているのに対して、制振の場合は1/48と 1/30以下に低減されている.制振ダンパーを設置するこ とにより、層間変形角の値を一般的に安全限界として用 いられている1/30以下に抑えることが可能となり、倒 壊防止に対する明確な効果が確認された.

図-13には、各階の最大層間変位の推移を、制振の場 合と耐震の場合で比較して示す。制振ダンパーを設置し た1階の場合、制振は耐震に比べて、前震を受けた後の 本震の層間変位の増加が抑制されていることが分かる。 これは制振ダンパーを設置することにより、構造用合板 耐力壁の損傷が低減されていることに起因していると考 えられる。

§5. おわりに

以上,木造建築物の実大試験体に対して,熊本地震前 震,本震を連続して入力した場合の振動台実験を行い,そ の耐震性能について検討した.

また,実験結果との比較によって検証した木造建築物 用の振動解析モデルに対して,制振ダンパーを組込んだ 場合の解析的検討を行い,制振ダンパーの効果について 検討した.

その結果,以下の事項が明らかとなった.

熊本地震前震と本震とを連続して加振した場合の,本 震の最大層間変形角は,前震の値に比べて2倍以上の値 を示した.これは,前震で受けた構造用合板耐力壁の剛 性低下の影響に起因するものと考えられる.

今回適用した木造用解析モデルにより, 熊本地震前震, 本震を連続して加振した場合の木造建築物の挙動を良く 説明できることが分かった.

表一5 最大層間変位と最大層間変形角の比較

2階		
X方向	熊本地震前震	熊本地震本震
耐震	31.7 (1/86)	42.3 (1/64)
制振	17.2 (1/159)	39.3 (1/70)
1階		
X方向	熊本地震前震	熊本地震本震
耐震	64.1 (1/45)	139.0 (1/21)
制振	34.2 (1/84)	59.8 (1/48)

今回適用した高減衰ゴムを用いた制振ダンパー(粘弾 性ダンパー)は、最大層間変形角の低減に対して大きな 効果を持つことが確認された.また、制振ダンパーの設 置により、繰り返し地震動を受けた際に、構造用合板耐 力壁の損傷を低減できることが分かった.

謝辞.本報は,住友ゴム工業株式会社との共同研究開発 における成果の一部を報告したものである.ここに記し て謝意を表する.

参考文献

- 1) 木造軸組工法住宅の許容応力度設計(2017年版),公益財団法人日本住宅・木材技術センター,2017.3
- 2) 曽田他:木造構造物の復元力特性のモデル化と動的 解析への適用,日本建築学科関東支部研究報告集, pp. 201-204, 2007.
- 3)谷他:鉄筋コンクリート耐震要素の復元力特性(その3),日本建築学会論文報告集第228号,pp.39-48, 1975.2
- 4)独立行政法人防災科学技術研究所,大都市大震災軽減化特別プロジェクトⅡ震動台活用による構造物の耐震性向上研究,pp.279,2006.5
- Athol J Car : RUAUMOKO-Inelastic Dynamic Analysis Program, Department of Civil Engineering, University of Canterbury, Christchurch New Zealand, 1981–2001.
- 6) 櫻井他:高硬度ゴムダンパーを用いた住宅用制振壁の開発(その8),日本建築学会大会学術講演梗概集(中国), pp. 383-384, 2017.8
- 7) 櫻井他:高硬度ゴムダンパーを用いた住宅用制振壁の開発(その3),日本建築学会大会学術講演梗概集 (東海),pp.221-222,2012.9