テーパシールドに関する基礎的研究(第1報)

A Basic Study of Tapering Shield, I.

斉藤 顕次*	松井	健一**
Kenji Saito	Kenichi	Matsui
長谷部廣行***	岡田	隆治****
Hiroyuki Hasebe	Takaji	Okada
平岡 博明**** Hiroaki Hiraoka	*	

要 約

通常のシールド工法で、大きな膨張性地圧が発生する地山を掘削することは、シールド の周囲に作用する大きな地圧のため、シールドの推進力がきわめて大きくなり、困難であ る。

しかし、シールドの外形に若干の傾斜角をつけたテーパシールドでは、シールドの推進 力が減少することが、模型実験によって明らかになり、その結果、大きな膨張性地圧が発 生する地山でのテーパシールドによる掘削の可能性が、明白になった。

- 目 次
 - §1. はじめに
 - §2. 実験条件
 - §3. 実験方法
 - §4. 模型地盤
 - § 5. 実験装置
 - §6. 実験手順
 - §7. 実験結果及び検討
 - §8. おわりに

§1 はじめに

数10kgf/cmの膨張性地圧が作用する地山をシールド工 法によって掘削する場合,通常のシールドでは,シールド の周面に作用する大きな地圧によって,地山とシールド との周面摩擦がきわめて大きくなり,シールドを推進さ せるためには非常に大きな推進力を要し,掘削は不可能 となる。

シールドの外形に若干の傾斜角をつけたシールド(以 下テーパシールドと称する) では, その外面の傾斜によっ

て、地山との周面摩擦の作用する状態が変化し、シール ドの周面に作用する大きな地圧の一部が推進力に転化す るので、シールドの推進に要する推進力が減少すると考 えられる。

この傾斜角による推進力の減少の効果を実証するため には、実際にテーパシールドに地圧を作用させ、推進力 を測定することが必要である。実物大実験は不可能であ るが、模型実験によって、推進力を測定することは可能 である。

本報文は、テーパシールドに関する基礎的研究として、 テーパシールドによる推進力減少の効果を実証するため に行った模型実験について述べたものである。

§ 2 実験条件

実験にあたって、次の基本的な条件を設定した。

Fig-1 模型シールドの形状 Shape of shield model

- 1) 模型シールドは、Fig.-1のような形状で、外径3
 18 mm、長さ450mmとする。シールド外形の傾斜角は、
 - (1) Casel; $\tan \alpha = 0$
 - (2) Case 2; $\tan \alpha = 1/100$
 - (3) Case 3 ; $\tan \alpha = 1/50$
 - の3種類とする。
- 2) 模型シールドには、模型地盤を通して30kg f/cm² (2940kPa)の周圧を作用させる。
- (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (196)
 (4) (19
- これらの条件は、実際に存在する膨張性地山及び実際 の規模のシールドの縮尺を考慮して決めたものである。

§ 3 実験方法

Fig.-2の説明図に示すように、模型シールドの周囲に 模型地盤を作製し、油圧によりゴムスリーブを通して模 型地盤に周圧を加えた。

周圧を一定に保ち,模型シールドの一端に模型シール ドが動き出すまで荷重を加え,模型シールドの載荷重(推 進力),変位量及びひずみ量を測定した。

Fig-2 実験方法説明図 Explanation of model testing

§ 4 模型地盤

模型地盤は、Fig.-2の説明図に示すように二層構造に なっている。模型シールドに接する第一層は、§2実験 条件の3)項に該当する地盤で、厚さ100mmである。ゴム スリーブに接する第二層は、ゴムスリーブと一体となっ て、第一層及び模型シールドに周圧を伝えるもので、厚 さ50mmである。

模型地盤は、セメント、ベントナイト及び水を練りま

ぜて硬化させたもので、その配合をTable-1に示す。

Table-1 模型地盤の配合(1m³当り)

Mix	proportion	of	ground	model	materials
-----	------------	----	--------	-------	-----------

	セメント	ベントナイト	水	地盤作製法
第1層	310kg	620kg	663kg	張り付け
第2層	690kg	69kg	756kg	流し込み

第一層の地盤材の24時間後のせん断強さをFig.-3 に示 す。第二層の地盤材の一軸圧縮強さは、22時間後で1.79 kgf/cm² (175kPa) である。

Fig-3 第一層地盤材のせん断試験(圧密等圧せん断) Test result of direct shear test for the first layer (CD Test)

第一層は、模型シールドを建て込んだのち、模型シー ルドの周囲に地盤材を手で張り付けて作製した。第二層 は、第一層を作製したのち、ゴムスリーブ及び型枠を設 置し、第一層とゴムスリーブの間に地盤材を流し込んで 作製した。

§ 5 実験装置

実験装置の全景をPhoto-1に示す。

Photo-1 実験装置 Testing device

5-1 模型シールド

模型シールドは、鋼製(STPG管で作製した)で、その形状の詳細をFig.-4に示す。

1. Case 1. $tan \alpha = 0$

全長650mmのうち周圧が作用する部分は、中央部の 450 mmである。

5-2 圧力容器

模型地盤に周圧を加える圧力容器を**Fig.-5**, **Photo-2** に示す。

圧力容器は、厚さ24~25mmの鋼板を加工して作製した。 油圧を模型地盤に伝達するゴムスリーブは厚さ3mmの 軟質のゴム板を加工したものである。ゴムスリーブの上 部定着板は、Fig.-4の模型シールドの形状に応じて3種 類作製した。

Fig-5 圧力容器 Pressure chamber

Photo-2 圧力容器 Pressure chamber

5--3 加力装置

周圧及び荷重の加力装置をFig.-6に示す。

Fig-6 加力装置 Loading equipments

周圧は、分離式油圧ポンプ(HPW-10)を用いて発生 させ、荷重は、50tf分離式油圧ジャッキ(RM-50)と分 離式油圧ポンプ^(HPW-5)を用いて加えた。周圧の読み 取りは,最大圧力50kgf/cm^(4900kPa)のブルドン管式油 圧計を,荷重の読み取りは,最大荷重50tf (490kN)の荷 重変換器を用いて行った。

5-4 計測装置

模型シールドには、ひずみを測定するために、各シー ルドの内側にひずみゲージを貼付けた。シールド中央部 に円周方向と軸方向のひずみを測定する二軸ゲージ(F CA-6・1L)を4箇所、シールドの載荷端に軸方向のひず みを測定する一軸ゲージ(KFC-5-C1-11)を4箇所に貼 付した。

実験の計測システムを**Fig.-7**に, 計測装置を**Photo -3** に示す。

Fig-7 計測システム Measuring system

Photo-3 計測装置 Measuring apparatus

模型シールドの変位は、2個のダイヤルゲージ型変位 計 (DDP-30) で測定した。

荷重変換器,ダイヤルゲージ型変位計及び模型シール ド中央部のひずみケージは,動ひずみ測定器で計測し、 マルチペンレコーダに記録した。模型シールド載荷端と 中央部の一部のひずみケージは,自動デジタルひずみ測 定装置で計測した。

§ 6 実験手順

載荷試験台の上に模型シールド保持台と圧力容器の底 板を据える。底板にはゴムスリーブの下部定着板を取り 付けて置く。底板に模型シールドを建て込んだのち,第 一層の地盤材を手で貼り付ける (Photo-4 参照)。第一層 を作製したのち,下部定着板にゴムスリーブを定着する。

Photo-4 第一層地盤の作製 Making the first layer by hand

ゴムスリーブに型枠を被せ、第一層とゴムスリーブの間 に、第二層の地盤を流し込み、そのまま24時間養生して 模型地盤を硬化させる。

養生後,型枠を外して模型地盤の表面を整形し,上部 定着板を載せてゴムスリーブを定着する(Photo-5参照)。

Photo-5 上部定着盤及びゴムスリーブ Upper fixing disk and fixed rubber sleeve

圧力容器の側板を取り付け、ゴムスリーブと側板の間に オイルを充てんし、上板を取り付けて圧力容器を組み立 てる。模型シールドの保持台を約50mm下げる。

載荷用油圧ジャッキを除いた加力装置及び計測装置を

設置し,油圧ポンプで模型地盤に周圧を加える。周圧を 加える時点で計測を開始する。

ブルドン管式油圧計による周圧の読みが、30kgf/cm²(2 940kPa)に達した時点で、載荷用油圧ジャッキを設置し、 周圧を30kgf/cm²(2940kPa)に保持しながら模型シールド に荷重を加える。

荷重が最大値に達し, さらに模型シールドの変位が進 行して荷重が一定値になった時点で, 載荷を止めて実験 を終了させる。

§7 実験結果及び検討

実験結果をTable-2に計測データの記録例をFig.-8 に 示す。

\sim		載 荷 重 (tf)		シールド	シールド中央部実測ひずみ				
			最大荷重	最小荷重	(mm)	$\varepsilon_{\theta} (\times 10)^{-6}$	e, (×10 ⁻⁶)		
Casel	周圧	無載荷		—	0	-385.84	131.64		
(0)	30kgf/cm	載 荷	24.26	16.38	(0.38)	(-347.81)	(18.95)		
Case2	周圧	無載荷			1.02	-157.96	47.76		
(1/100)	30kgf/czł	載 荷	17.52	9.30	(0.35)	(-150.38)	(24.81)		
Case3	周庄'	無載荷			2.29	-175.38	49.95		
(1/50)	30kgf/c a r	載 荷	13.34	5.85	(0.66)	(-176.10)	(14,41)		

Table-2 実験結果表 List of test results

注1) ₆₆: 円周方向ひずみ、2) ₆₇: 柚方向ひずみ、3) ()内は最大荷重に達したときの値、 4) 正: 引張ひずみ、負: 圧縮ひずみ

Record of test result of case 1

7-1 シールドの周圧による変位

模型地盤に周圧を加えると、模型地盤は圧密され、模 型シールドは、シールド外形の傾斜に応じて、押し下げ られる方向に変位する。この変位は、周圧によってシー ルドに推進力が働いていることを示している。

周圧が30kgf/cm² (2940kPa)に達するまでに生じた変位 量は, Fig.-9のようになり, このときシールドに働いた 推進力は, シールド外形の傾斜1/100で3tf/m² (29.4kPa), 1/50で6tf/m² (58.8kPa)である。

7-2 シールドに作用する周圧

模型地盤に30kgf/cm^{*}(2940kpa)の周圧を加えたとき、 模型シールドの中央部に生じるひずみの実測値と解析値

Fig-9 模型シールド変位量(周圧 30kgf/cm²) Relationship between displacement and external inclination of shield model at 30kgf/cm² cell pressure

Table-3 模型シールドのひずみ量(周圧30kgf/cm^{*}) Measured strain of shild model at 30kgf/cm^{*} cell pressure

	中央部実	測ひずみ	中央部ひずみ解析値		
	$\varepsilon_{\theta}(\times 10^{-6})$	ε_s ($ imes 10^{-6}$)	$\varepsilon_{\theta}(\times10^{-6})$	ε_s ($ imes 10^{-6}$)	
Case1(0)	-385.84	131.64	-317.3	95.2	
Case2(1/100)	-157.96	47.76	-143.0	43.3	
Case3(1/50)	-175.38	49.95	-169.3	51.8	

は、Table-3のようになる。

Table-3 に示すひずみの解析値は、「シールド模型実験 計画(応力解析)」*¹の報告書によるもので、模型シール ドに直接30kgf/cm²(2940kPa)の周圧を作用させて、模 型シールドのひずみ量を計算したものである。

このひずみ解析値と実測ひずみとの比較から、模型地 盤に加えた30kgf/cm² (2940kPa)の周圧は、模型シールド にも作用しているものと考えられる。

7-3 シールドの推進力

周圧を30kgf/cm^(2940kPa)に保持して模型シールドに 荷重を加えると、模型シールドの変位と荷重は、Fig.-8 の記録に示す動きをする。

シールドに荷重を加えると、シールドの変位は徐々に 増加する。荷重がある値に達するとシールドは急激に大 きな変位を示し、荷重も急激に低下する。再び荷重を加 えると前と同様な動きを示すが、前の値に達しないうち にシールドは急激に大きく変位し、荷重も急激に低下す る。このようなことを2、3回繰り返したのち、シール ドの変位は進行状態を示し、荷重はある一定な値を示す。

^{※1 &}quot;シールド模型実験計画(応力解析)"昭和55年12月, 土木設計部

最初に示す値は、載荷重の最大値であり、最後に示す 一定値は、載荷重の最小値である。最大荷重は、シール ドを動かすのに必要な推進力(最大推進力)であり、最 小荷重は、動きだしたシールドの進行を維持するために 必要な推進力(最小推進力)である。推進力は載荷重を シールドの表面積で除した値として表示する。

最大荷重に達するまでにシールドは、0.35~0.66mm変 位する。最小荷重を示すまでには、さらに5.93~10.76mm 変位する。

載荷の過程では、模型シールドに発生しているひずみ に、ほとんど変化が見られないことから、シールド外形 の傾斜がこの程度ならば、模型地盤と模型シールドとの 接触は、十分維持されているものと考えられる。

載荷重及び推進力の最大値,最小値を求めると,Table -4のようになる。

 Table-4
 載荷重及び推進力の値

 Values of load and driving force

	模型	載 荷	重 (tf)	推進力(tf/m ²)		
	シール下 32回柄 (m ²)	最大值	最小值	最大值	最小值	
Case1(0)	0.450	24.26	16.38	53.91	36.40	
Case2(1/100)	0.443	17.52	9.30	39.55	20.99	
Case3(1/50)	0.437	13.34	5.85	30.53	13.39	

Table-4の値から、シールド外形の傾斜と推進力の関係を図示すると、Fig.-10のようになる。

Fig.-10によれば、シールド外形の傾斜の存在によって、 推進力が大幅に低下することは明らかである。最大推進

Fig-10 模型シールド推進力(周圧30kgf/cm²) Relationship between driving force and external inclination of shield model at 30kgf/cm² cell pressure

力は、1/100の傾斜で27%、1/50で43%低下している。 最小推進力では、1/100の傾斜で42%、1/50で63%低下 している。

7-4 推進力の検討

模型地盤と模型シールドとの間に働くせん強さは、(1) 式で表すことができる。

$$Sa = ca + \sigma \cdot \tan \delta$$
(1)

ここに、Sa: せん断強さ、Ca: 模型地盤と模型シールド との間の付着力、 σ : 垂直応力 (周圧)、 δ : 模型地盤と 模型シールドとの間の摩擦角

外形に α なる傾斜角を有するシールドに接して, σ な る:周圧を受ける地盤内粒子は, Fig.-11 のような動きを 示す。すなわち, Fig.-11 においてシールドがA—A'に 変位すると, 周圧を受けている地盤内粒子は, シールド の表面に接触しながらB—>B'に移動する。このとき, シールドと地盤との間にせん断力が作用する。

シールドに p なる力(推進力)を加えるとFig.-11 に 示すシールドと地盤の動きと、(1)式から、シールドには、 Fig.-12 に示す力が作用するものと考えられる。

Fig-11 シールドと地盤の動き Movement between shieldmodel and ground model

シールドの推進方向の力のつり合いを考えると、これ らの力関係は、(2)式で表される。

西松建設技報 VOL 5

 $\mathcal{P} + \sigma \cdot \sin \alpha = C_a \cdot \cos \alpha + \sigma \cdot \tan \delta \cdot \cos \alpha$

 $\therefore p = C_a \cos \alpha + \sigma \cdot \tan \delta \cdot \cos \alpha - \sigma \cdot \sin \alpha \dots \dots \dots (2)$

(2)式の $Ca^{*}\cos\alpha$ は付着力を、 $\sigma^{*}\tan\delta^{*}\cos\alpha$ は摩擦力を、 $\sigma^{*}\sin\alpha$ は周圧によって生じる推進力を表している。

(2)式において $\alpha=0^{\circ}$ とすると、 $p = Ca^{+\sigma \cdot} \tan \alpha$ となり、 (1)式と同じものになる。

推進力の最大値と最小値の差は、シールドと地盤との 間の付着力の有無によるものと考えると、最大推進力は (3)式で、最小推進力は(4)式で表すことができる。

最大推進力 $pmax = Ca \cdot \cos \alpha + \sigma \cdot \tan \delta \cdot \cos \alpha - \sigma \cdot \sin \alpha - (3)$ 最小推進力 $pmin = \sigma \cdot \tan \delta \cdot \cos \alpha - \sigma \cdot \sin \alpha$ ------(4)

シールド外形の傾斜による推進力の変化の要因を知る ために, Table-4 の推進力の実測値, (3)式及び(4)式を用 いて, (2)式の各項の値を計算するとTable-5 のようにな る。

 Table-5
 推進力成分の計算

 Calculated results of driving force

	α (*)	σ (tf/m¹)	Ca•cosσ (tf/m²)	σ•tan∂•cosα (tf/m³)	–σ•sinα (tf/m²)	Ca (kgf/cm²)	8 (°)
Case1(0)	0	300	17.51	36.40	0	1.75	6.92
Case2(1/100)	0.573	300	18.56	23.99	-3.00	1.86	4.57
Case3(1/50)	1.146	300	17.14	19.39	-6.00	1.71	3.70

Table-5 によれば、シールドの推進力の変化は、付着 力の変化ではなく、シールド外形の傾斜に応じて必然的 に生じる周圧による推進力のほかに、摩擦力の変化によ って生じている。摩擦力の変化は、摩擦角の変化である。 Table-5 で求めた付着力及び摩擦角とシールド外形の傾 斜の関係を図示するとFig.-13 のようになる。

Fig.-13 によれば、付着力はほとんど変化しないが、 摩擦角はシールド外形の傾斜に応じて減少している。

以上の検討により、シールド外形の傾斜によるシール ドの推進力の減少は、周圧による推進力の発生のほかに、 地盤とシールドとの間の摩擦角の減少という形で表れて いるといえる。

§8 おわりに

模型実験によって,テーパシールドによる推進力の減 少の効果を実証することができた。このことは,通常の シールドでは,掘削できないような膨張性地圧が生じる 地山を,テーパシールドで掘削することが可能であるこ とを示している。

テーパシールドの推進力の減少は、傾斜角の存在によ

って、周圧による推力の発生のほかに、地盤とシールド との間の摩擦角が変化するためである。

テーパシールドによる推進力の減少の効果が,周圧や 地盤の性質によって,どのように変化するのかを解明す ることが今後の課題である。

本模型実験は,シールド委員会の決定に基づいて実施 されたもので,実験にあたって,御指導を項きました各 委員並びに関係者各位の御協力に深く感謝いたします。