建屋の復元力特性に関する研究

一直交壁を有する耐震壁の実験一

Load-Deflection Characteristics of Nuclear Reaction Building Structures

阿世賀 宏* Hiroshi Asega

小林 康之* Yasuyuki Kobayashi

山内 次郎** / Jiro Yamanouchi M

小島 雅樹*** Masaki Kojima

武内 義夫*** 小 Yoshio Takeuchi Ta

小林 孝至*** Takayuki Kobayashi

要 約

本実験では、原子炉建屋のインナーボックスを対象として、耐震壁に直交する壁(フラ ンジ壁)が、耐震壁のせん断耐力、及びその破壊モードなどにおよぼす影響を調べた。

最終的な破壊形式は,各試験体ともコンクリートの圧壊によるスリップ破壊型となった が,フランジ壁の効果と考えられる次の事項がわかった。

- (1) フランジ幅を変化させると、耐震壁の最大耐力には大きな差はなかったが、最大耐力 に到る途中の部材角では、30~10%程度の荷重差が認められた。
- (2) フランジ幅を変化させると、ひびわれパターン、ウエブ鉄筋のひずみ分布、及び等価 粘性減衰定数などに相違がみられた。
- 目 次
 - §1. はじめに
 - §2. 試験体
 - §3. 使用材料
 - §4. 加力方法
 - §5. 測定方法
 - §6. 実験結果
 - §7. まとめ
 - §8. あとがき
- §1. はじめに

本報告は、(社建築研究振興協会に設置された「建屋の 復元力特性に関する研究委員会」(委員長 大崎順彦博 士)の昭和57年度実験計画書に基づいて実施した耐震壁 の実験についてまとめたものである。 原子炉建屋の建設件数は、近年増加しており、その耐 震設計法も、急速な進歩をとげている。原子炉建屋の主 体構造は、一般構造物とは異なりその形状は、複雑な耐 震壁の組み合わせから成り、耐震壁の鉄筋量も一般のも のと比べると非常に多い。このような高配筋耐震壁の基 本的な力学的性状については、まだ充分には把握されて おらず、特に、せん断破壊形式のものに関しては、抵抗 機構、及びその破壊機構について不明な点が多い。

本実験では,原子炉建屋を対象とした高配筋耐震壁の せん断耐力,破壊モードなどにおよぼす直交壁(フラン ジ壁)の影響を調べることを目的とした。

§2. 試験体

2-1 試験体の計画

試験体のパラメーターは、フランジ幅,壁補強筋比 (Pw)およびシャースパン比(M/QD)として、Table 1に示す合計8体の試験体を計画した。いずれの試験体

^{*} 技術研究部原子力室係長 ** 技術研究部原子力室課長 *** 技術研究部原子力室

とも、フランジ芯々間距離は200cm, 壁厚は8 cm とした。試験体形状の概要を Fig. 1 に示す。

シャースパン] 壁補強筋比	フランジ幅 と,	100 cm	50 cm	フランジ無し		
M/0.D=1.0	Pw = 1.2%	① (J1-1-1.2-100)	② (J1-1-1.2-50)	③ (J1-1-1.2-0)		
M / Q D = 1.0	Pw=2.0%	④ (J1-1-2.0-100)	5 (J1-1-2.0-50)	6 (J1-1-2.0-0)		
M/QD=0.6,	<i>Pw</i> =1.2%	⑦ (J1-0.6-1.2-100)		8 (J1-0.6-1.2-0)		
D :フランジ Pw:壁補強筋	芯々間距離 比	():	試験体記号 a b c d J ◯ − ◯ − ◯ − ◯ − ◯	a D		

Table1 試験体一覧(パラメータ)

a:シリーズNa b:シャースパン比 c:壁補強筋比 d:フランジ幅 ①:試験体Naを示す

Fig.1 試験体形状図

フランジ幅は,100cm,50cm およびフランジ無しの 3種類とし,フランジ部曲げ補強筋量は,3種類とも同 量とした。

なお、フランジ無しのタイプのものに関しては、耐震 壁の両端部に、上述の曲げ補強筋の配筋可能な最小断面 として、14cm×14cmの柱型を設けた。

壁補強筋比 Pwは,シャースパン比. M/QD=1.0 のシリーズでは,1.2%および2%の2種とし,M/ QD=0.6のシリーズでは1.2%とした。

各試験体とも,加力スラブの厚さは30cm とし,加力ス ラブの幅は,原則としてフランジ幅と同一としたが,フ ランジ無し(14cm×14cmの柱型タイプ)のものでは, 幅50cm とした。

試験部分の壁筋は,縦・横筋共 D 6 (SD35相当) 複配 筋として,最大粗骨材寸法10mm の豆砂利コンクリート (FC=240kgf/cm²) を使用した。

2-2 試験体の製作

500

1,000

500

試験体の製作を,昭和57年12月から昭和58年2月にかけて,西松建設株技術研究所でおこなった。

試験体8体のコンクリート打設は、3回に分け、次の ように実施した。

試験体名	No.7 •	• 8		昭和57年12月22日
試験体名	No.1	• 2	• 3	昭和58年1月19日
試験体名	No.4 ·	- 5	• 6	昭和58年2月3日
試験体の製	作手順の	の概	要は,	以下の通りであった

- (1) 壁筋(D6筋)の切断および鉄筋ひずみゲージ取付
- (2) 試験体製作位置の土間コンクリート打,同左部均し モルタル仕上およびベニヤ底板の取付,すみ出し
- (3) 基礎スラブ下端筋組立後, 壁縦筋位置保持用の治具 金物および壁型枠保持用の治具金物の据付,基礎スラ ブ上端筋の組立て
- (4) 壁筋組立て
- (5) 基礎および壁型枠組立て
- (6) コンクリート足場用単管足場組み
- (7) 加力スラブ型枠組み立て後、加力スラブ配筋
- (8) コンクリート打設,養生
- (9) 原則として1週間の養生後型枠脱型

§3. 使用材料

3-1 鉄筋

試験部壁筋には, D 6 鉄筋を用いた。コイル状に製造 されたものを, 直線加工後, 熱処理して降伏点を SD35相 当とした。また, フランジ無し柱型タイプの柱筋には, D16, D19 (SD35) を使用した。D 6 及び D16, D19鉄 筋の材料試験結果を Table 2 に示す。

3-2 コンクリート

試験部分には,最大粗骨材寸法10mmの豆砂利コンク リートを使用した。豆砂利コンクリートの配合を,Table 3に示す。

		降伏強度	引張強度	伸 び	ヤ ン グ 係 数
		(kgf/cm ²)	(kgf/cm ²)	(%)	(×10 ⁶ kgf/cm ²)
D 6	Na 1	3.820	5.130	27	1.89
	Na 2	3.900(3.890)	5.190(5.170)	27 (25)	2.18 1.99
	Na 3	3.950	5.190	21	1.99
D 16	Na 1	3.720	5.360	19	1.98
	Na 2	3.950(3.810)	5.850(5.540)	18 (19)	1.91 2.01
	Na 3	3.760	5.420	20	2.15
D 19	Na 1	3.890	5.910	18	2.08
	Na 2	3.910(3.900)	5.880(5.900)	18 (18)	2.12 2.08
	Na 3	3.900	5.900	18	2.03

Table2 鉄筋の材料試験結果

(注) ()内は3本の平均値を示す

Table3 豆砂利コンクリート配合表

配合款計強度	スランプ	W/C	細骨材率	セメント	水	∦⊅	砂利	混和剤
(kgf/cm ²)	(cm)	(%)	(%)	(kg/m ³)	(kg/m ³)	(kg/m³)	(kg/m ³)	(kg/m ³)
240	21	61.5	50.4	320	197	883	868	

セメントはアサノ普通ポルトランドセメントを, 混和 剤は AE 減水剤 (ポゾリス No5L) を使用した。Table 4 に, 各試験体の加力時材令のコンクリート材料試験結 果を示し, Fig.2 に, 豆砂利コンクリートの応力一ひず み関係の一例を示す。

§4. 加力方法

4-1 加力装置

実験は、千葉大学工学部大型実験施設内で実施した。 試験体の基礎スラブは、計12本の32¢PC 鋼棒でテスト フロアーに締付けた。基礎スラブの PC 鋼棒の締付力は 20tf/本とした。

水平加力時に,試験体の水平移動を防ぐために,基礎 スラブの前後に鋼製の治具を設け,計12本の32 PC 鋼 棒でテストフロアーに締付力50tf/本で締付けた。

試験体への水平加力は、反力壁に取付けた2台の100 tf/台アクチュエーターを用い、鋼製加力ばりを押し引き 交番加力した。

加力ばりと試験体の加力スラブとは、32¢PC 鋼棒計 5本で、締付力30tf/本で締付けた。

試験体への鉛直加力は、テストフロアー上に組立てた 鉄骨フレームに取付けた2台の45tf/台アクチュエータ ーを用い、試験体加力スラブ上に設けた鋼製加力ばり (BH-400×500×40×32)を介しておこなった。 軸力 は、各試験体ともフランジを含む試験部分壁断面積に対

Table4	コンクリートの材料試験結果(加力時材令)
I abiet	

試験体		材令		壁 (豆砂利	コンクリート)			
No.	試験日	(日)	圧縮強度(kgf/cm ²)	割裂強度(kgf/cm ²)	ヤング係数(×10 ⁵ kgf/cm ²)	ポアリン比(^j)		
1	S 58.3 • 4	44	207 214 (211) 211	11.8 17.0 (14.6) 15.0	1.71 1.35 (1.53) 1.54	0.136 0.171 (0.168) 0.196		
2	3 • 9	49	214 216 (216) 218	22.6 16.8 (19.7)	1.87 1.75 (1.66) 1.35	0.183 0.194 (0.182) 0.168		
3	3 • 14	54	216 229 (221) 219	19.4 17.2 (19.0) 20.5	1.60 1.39 (1.51) 1.55	0.143 0.164 (0.159) 0.171		
4	3 • 30	55	279 286 (281) 279	24.7 19.8 (22.2) 22.1	1.71 1.81 (1.74) 1.69	0.203 0.190 (0.192) 0.182		
5	3 • 24	49	255 269 (260) 257	24.3 21.3 (23.4) 24.6	1.78 1.65 (1.67) 1.58	0.156 0.158 (0.148) 0.130		
6	3 • 18	43	252 247 (255) 267	17.2 18.5 (17.4) 16.6	1.69 1.80 (1.71) 1.63	0.171 0.196 (0.177) 0.164		
7	2 • 15	55	242 246 (244) 245	15.6 19.7 (17.4) 17.0	$ \begin{array}{c} 1.81 \\ 1.65 \\ 1.68 \end{array} $	0.151 — (0.147) 0.142		
8	2 • 22	62	250 249 (246) 240	16.6 20.1 (18.6) 19.1	1.54 1.66 (1.58) 1.54	0.218 0.219 (0.203) 0.173		

(注)()内は3本の平均値を示す。

して、一定軸方向応力度の=20kgf/cm²となるようにし た。

また、水平加力時の試験体の倒れを防止するために、 先端ローラ支承とした鋼材(BH-200×200)4本を,鉄 骨フレームの横材に取付け、試験体加力スラブに接触さ せた。

加力装置の概要を Fig.3 に示す。

Fig.3 加力装置概要図

4-2 加力サイクル

加力サイクルは、Table 5 に示す標準加力スケジュー ルによった。第1, 第2サイクルは、フランジ又はウエ ブに初ひびわれが発生するまでの繰り返しとした。第3 サイクル以降は、試験体項部加力スラブ端部位置(100tf アクチュエーターと反対側)の部材角で制御した。

部材角Rは次式によった。

 $R = \delta/h$

ここで δ:項部加力スラブレベルでの水平変位 h:基礎スラブ上端から加力スラブ芯まで の高さ

§ 5. 測定方法

5 --- 1 変位の測定

変位計は、水平変位測定用として、試験体項部加力ス ラブ、壁のウエブ部、フランジ部及び基礎スラブのそれ ぞれ主要な箇所に取付けた。

加力スラブと壁部の水平変位は、基礎スラブとの相対 変位を測定し,別に基礎スラブにおいては,テストフロ アーに対する水平、垂直方向の移動量を測定した。

一方、試験体のせん断変形を測定するため、ウエブ部 の対角方向に変位計を取り付け、曲げ変形を測定するた めに、フランジ部の両端外側にも、鉛直方向に変位計を 取り付けた。

変位計の配置の一例を Fig.4 に示す。

5-2 鉄筋のひずみ測定

試験体の鉄筋のひずみ測定位置の一例を Fig.5 に示 す。鉄筋のひずみ測定は,壁体部の縦筋,横筋について, 以下の項目を調べることを目的とした。

(1) ウエブ部、フランジ部の縦筋のひずみ状況

(2) ウエブ部横筋のひずみ状況

(3) 縦筋脚部定着部分の、基礎スラブからのぬけ出し状 況

5-3 コンクリートのひずみ測定

試験体のウエブ部、フランジ部のコンクリート表面ゲ ージの取付位置の一例を Fig.6 に示す。

コンクリートのひずみ測定は、壁体部のコンクリート について、以下の項目を調べることを目的とした。

- (1) ひびわれ発生以前のウェブ部コンクリート表面の主 応力度、主応力方向を調べる。
- (2) ひびわれ発生以前のフランジ部コンクリート表面 (特にフラシジ脚部)の主応力度、主応力方向を調べ る。
- (3) 内部埋込み型のモールドゲージを用いて、フランジ 部脚部コンクリートのひずみ状況を調べる。

5-4 ひびわれの観察

各荷重段階でのひびわれ発生状況と、ひびわれの進展 状況を把握するために、ひびわれ発生状況の観察・記録 とひびわれ幅の測定を行った。

a) ひびわれ発生状況の観察,記録は,下記の方法によっ た。

- (1) 試験体の表面に水性白ペンキを塗り、格子模様を入 れた。
- (2) ひびわれの発生・進展状況は油性マジックを用い、 正加力時は、黒の実線、負加力時は赤の破線で表した。
- (3) 試験中は、ひびわれ状況を適宜写真にとった。
- b) ひびわれ幅の測定は、下記の方法によった。
- (1) ひびわれ幅の測定は、原則として前述の標準加力ス ケジュールの1, 2, 3, 6, 10, 14, 15の各サイク

ルの正負のピーク時及びこれらのサイクルの荷重ゼロ 時に行った。

ブ,フランジ共約10cm×10cm とした)すべてとして, 各格子中最大のものをそれぞれの代表値とした。 (2) ひびわれ幅測定対象位置は、前述の格子模様(ウエ (3) ひびわれ幅の測定は、クラックスケールによった。

29

5-5 測定システム

測定システムを Fig.7 に示す。

§6. 実験結果

6-1 ひびわれ発生状況

各試験体の最終ひびわれ状況を Fig.8~15 に示す。 ウエブ部のせん断初ひびわれ発生時の部材角 R は, No.4 試験体では0.28×10⁻³rad, No.8 試験体では 1.03×10⁻³radであったが、その他の試験体では, 0.44~0.73×10⁻³radの範囲内であった。

フランジ部の初曲げひびわれは、M/QD=1.00シリーズ(NO.1~No.6)では、フランジ幅の影響を受けて、フ ランジ幅の広い試験体ほど高い荷重で発生したが、M/QD=0.60シリーズ(No.7, No.8)では、この傾向は認められなかった。

最終破壊は,各試験体ともすべて,ウエブ部の水平方 向のすべり破壊(図中の斜線で示す)となったが,その発 生位置は,フランジつきのものではウエブ部の中央より 上部,フランジ無しのものでは中央より下部であった。

なお,ひびわれ群の角度は,フランジ幅の広い試験体 ほど傾きの角度が大きくなる傾向が認められた。

各試験体の,ひびわれ幅と部材角 R との関係を, Fig.16 に示す。Pw=1.2%の試験体にくらべて, Pw= 2.0%の試験体のひびわれ幅が,小さいことが認められ

3.

6-2 荷重·変形曲線

各試験体の荷重・変形曲線を, Fig.17~24 に示す。 また各試験体の正側ピーク荷重の包絡線を比較したもの を Fig.25 に示す。

M/QD=1.0, Pw=1.2%のシリーズ(試験体 No.1 ~3)の最大耐力時の部材角 R は, ほゞ 8×10⁻³rad であった。フランジ壁の効果による耐力増は, 部材角 R が 6×10⁻³rad までは30~10%程度認められるが, それ以降は差は小さくなり,最大耐力はほゞ同じとなった。

M/QD=1.0, Pw=2.0%シリーズ(試験体 No.4 ~ 6)の最大耐力時の部材角 R は, ほゞ 6~7×10⁻³rad であり,前者に比較して,変形能が小さい。フランジ壁 の効果による耐力増に関しては, Pw=1.2%シリーズと ほゞ同様な傾向を示したが, No.4 試験体は試験体の製 作上問題があったと考えられる。また M/QD=0.6, Pw=1.2%のシリーズ(試験体 No.7,8)では,最大耐 力時の部材角 R は,ほゞ 8×10⁻³rad であった。

	$Fc \ kg/cm^2$	初期剛性	実験値	初ひび	られ荷 /	「重及び出	上率	最大	耐力	及び比	率	変	<i>4</i> . 1	形 D (V 10-3)	#	
NO	(材令)	令) (t/mm)	計算値 比 率	曲	17	い せん	断	曲	17	., せん	断	最大耐	<u> </u>	破壊	時	破壊形式
1	211 (44)	実験値 計算値	28.1 43.1	(+6)·3	6.0 3.0	(+2)	21.0 29.6	(+15)	73.0 74.8	(– 15)	83.0 77.9	(-15)	8.13	(+16)	9.01	曲げ降伏後
		比率	0.65	0	. 67		0.70		0.97		1.07					スリップ
2	216 (49)	実験値 計算値	22.0 39.5	(+3) 2 3	4.9 2.4	(+2)	17.4 29.9	(+14)	57.1 76.8	(- 15)	81.0 70.9	(-15)	8.02	(+16)	8.58	n
		比率	0.55	C	.76		0.58		0.74		1.14					
3	221 (54)	実験値 計算値	16.3 29.6	(+2) 1	6.3 0.7	(+3)	18.0 30.4	(+14)	59.0 91.5	(+16)	82.0 67.8	(+16)	9.42	(+16)	9.42	n
		比率	0.55	Q	.78		0.59		0.64		1.21					
4	281 (55)	実験値 計算値	22.3 49.7	(+6) 4 6	7.3 1.1	(+1)	13.3 32.6	(+14)	83.3 106.2	(+14)	88.0 102.4	(+14)	6.06	(+15)	6.24	и
		比率	0.44	0	. 77		0.40		0.78		0.86					
5	260 (49)	実 験 値 計算値	21.0 40.8	(-2) 2 3	6.6 6.9	(+2)	25.5 31.7	(+14)	79.4 113.2	(+14)	99.2 89.2	(+14)	6.02	(+15)	6.55	n
		比率	0.51	C	.72		0.80		0.70		1.11					
6	255 (43)	実験値 計算値	26.7 34.4	(-2) 2 2	3.7 2.9	(+3)	37.3 31.8	(+14)	87.5 138.9	(+15)	100.0 83.8	(+15)	7.53	(+16)	7.09	11
		比率	0.77	1	.03		1.17		0.63		1.19					
7	244 (55)	実験値 計算値	46.8 101.8	(+2) 2 9	4.0 0.7	(+2)	26.0 36.3		 124.7	(+15)	90.0 90.7	(+15)	8.06	(+16)	7.37	スリップ
		比率	0.46	0	. 26		0.71				0.99					
8	246 (62)	実験値 計算値	43.0 77.3	(+3) ² 3	4.0 5.4	(+3)	29.0 36.6		152.5	(+15)	87.0 79.6	(+15)	8.03	(+16)	8.65	11
		比率	0.55	C	. 67		0.79				1.09					

Table6 実験結果と諸強度式の比較

※実験値の()内の数字は加力サイクルを示す。

6-3 実験結果と諸強度式との比較

実験結果と諸強度式との比較の一覧を Table 6 に示 (1)曲げ初ひびわれ荷重 す。 Q=Mc/(h×1000

初期剛性は次式により求めた。

K=1/(1/Kf+1/Ks) : 全体剛性 $Kf=3EcIe/h^3$: 曲げ剛性

 $K_{\rm S}=G Aw/(kw h)$: せん断剛性

- Ec:コンクリートのヤング係数 Kgf/cm²
- *Ie* :鉄筋を考慮した断面二次モーメント *cm*⁴ (ウエブ鉄筋無視)
- h :壁下端より加力芯までの高さ cm
- G :せん断弾性係数 Kgf/cm² G=Ec/ {2×(1+ν)} ν:ポアソン比
- Aw:ウエブ部分の断面積 cm² 下図参照(鉄筋 無視)
- Kw': せん断変形算出用の形状係数で下式による

$$Kw' = 3(1 + \xi) \left[\eta + \xi (1 - \eta) \left\{ \frac{15}{8} (1 - \xi^2)^2 - \xi^4 \eta \right\} \right] / 5[1 - (1 - \eta)\xi^3]^2$$

諸強度計算式は下式によった $Q = Mc/(h \times 1000)$ *Mc*:曲げ初ひびわれモーメント $Mc = (1.8\sqrt{Fc} + \sigma_0) Ze$ Fc :コンクリート強度 Kgf/cm² Ze :フランジ鉄筋考慮の断面係数 cm³ σ:軸方向圧縮応力度 Kgf/cm² h:壁下端より加力芯までの高さ cm (2)せん断初ひびわれ荷重 $Q = \{0.085 \times 0.72 \times (500 + F_c) / (M/QD + 1.7)\} \times$ $(1 + \sigma_0/150) \times Aw/1000$ M/QD:せん断スパン比 (3)曲げ耐力 $Q = (atoy + 0.5a's soy + 0.5 \sigma_0 A) \times (\ell/h)/1000$ at :フランジの縦筋量 cm² **σ**y :フランジ縦筋の降伏点 Kgf/cm² a's:ウエブの縦筋量 cm² soy:ウエブ縦筋の降伏点 Kgf/cm² A :全断面積 cm² ℓ :柱芯々距離 cm (4)せん断耐力

 $Q = \left\{ 0.068 Pte^{0.23} (Fc + 180) / \sqrt{M/QD + 0.12} + \right.$

 $2.7\sqrt{Pseoy} + 0.1\sigma_0$ be $\cdot j$

6-4 履歴ループ面積と等価粘性減衰定数

構造物の履歴がループを描くと、そのループ面積に相 当するエネルギー吸収が行われ、振動を減衰させる。こ れを一般に履歴減衰と呼ぶ。履歴減衰を等価な粘性減衰 に置換し、線形振動として巨視的に扱う方法が良く用い られる。等価粘性減衰定数 he は下記の方法で求めた。

Fig.26~Fig.28に,各試験体の正側の等価粘性減衰 定数*he*と部材角*R*の関係を示す。

図より次のことがいえる。

- (1) 等価粘性減衰定数 he は、18~3%の間にある。
- (2) フランジ幅が大きいほどheは大きな値となる傾向に
 あり、部材角が4×10⁻³rad以下のときに顕著となる。

6-5 変形成分

Η

曲げ変形成分,せん断変形成分は,それぞれ以下に示 す方法で算出した。

せん断変形 $\delta_s = \gamma \times H = \alpha \times (\delta_1' - \beta_2')$ $\alpha = \frac{\sqrt{H^2 + L^2}}{2L}$ (6は伸びを+、縮みを-とする)

前記の方法で求めた曲げおよびせん断変形計算値の実 験値に対する百分率を求めたものを Fig.29~Fig.31 に示す。

L

図より次のことがいえる。

- (1) 曲げ変形の全体変形に占める割合は、およそ20%で ある。
- (2) この割合は、繰り返し回数又は部材角により、大き く変化しない。
- (3) (曲げ変形+せん断変形)の計算値/実験値は、90% から100%の範囲である
- 6-6 鉄筋のひずみ

各試験体の, ⑮サイクル正側ピーク荷重時のウエブ部 分 横 筋 の ひ ず み 状 況 を 整 理 し た も の を Fig.32 ~Fig.39 に示す。

各試験体とも横筋のひずみは、ウエブ下部よりウエブ 上部の方が大きい。またフランジ幅が広いものほど、鉄 筋比が大きいものほど横筋のひずみは小さくなる傾向が みられる。

Fig.32 No.-1 ウェブ横筋のひずみ分布 (⑮サイクル R=8.0×10⁻³ rad)

Fig.33 Na-2 ウェブ横筋ひずみ分布 (⑮サイクル R=8.0×10⁻³ rad)

Fig.34 No.-3 ウェブ横筋ひずみ分布 (15サイクル R=8.0×10⁻³ rad)

Fig.35 Na.-4 ウェブ横筋ひずみ分布 (①サイクル R=6.2×10⁻³rad)

Fig.36 Na-5 ウェブ横筋ひずみ分布 (⑮サイクル R=6.5×10⁻³ rad)

Fig.38 No.-7 ウェブ横筋のひずみ分布 (①サイクルR=8.0×10⁻³ rad)

Fig.39 No.-8 ウェブ横筋のひずみ分布 (①サイクル R=8.0×10⁻³ rad)

なお、耐力時のフランジ部分の縦筋は、M/QD=1.00シリーズではすべて降伏しているのに対して、M/QD=0.60シリーズではまだ降伏していない。

6-7 繰返しによる耐力低下率

縦軸に荷重, 横軸に繰り返し回数を取ったものを Fig.40~Fig.42 に示す。これらによれば, 最大耐力付 近ではフランジ幅の差異による耐力差は見られず, ほぼ 同一の値を示しているが, 耐力に至るまではフランジ幅

の広い方が,同一変形において大きな荷重に耐える傾向 にあり,フランジ幅の効果が表われている。

なお, No.4の試験体は, 低い値を示しているが, これ は試験体製作上問題があったと考えられる。

Fig.43は、同一変形での繰り返しによる耐力低下を 各同一変形の最大荷重で除したものである。これによれ ば、*M*/QD=1.0, *Pw*=1.2%のシリーズにおいては、 フランジ巾の広い方が、耐力低下は大きく表われる傾

向にあり、3回の繰り返しで約15%低下している。M/QD=1.0, Pw=2.0%のシリーズにおいてはフランジ幅の効果は顕著ではない。しかし、<math>Pw=1.2%のシリーズと比較して補強筋量の多い方が耐力低下は少ない傾向 にある。M/QD=0.6, Pw=1.2%のシリーズにおいては、<math>M/QD=1.0, Pw=1.2%のシリーズと同様にフランジ幅が広い方が耐力低下が大きい傾向にある。但し、<math>M/QDの変化による差異は認められない。

§7. まとめ

本実験結果をまとめると次の通りである。

- 初期剛性は実験値が計算値のほぼ1/2となり、フランジ幅の差異による実験値/計算値の差は見られない。
- (2) せん断ひび割れ発生部材角Rは、ほぼ0.4× 10⁻³radであり、フランジ幅、せん断補強筋比、せん断 スパン比による差異は認められない。
- (3) 曲げひび割れ発生荷重はフランジ幅の影響が認めら れ、フランジ幅の広いものほど曲げひび割れ発生荷重 は大きい。
- (4) M/QD=1.0のシリーズにおいてはフランジ縦筋 が曲げ降伏後すべり破壊を生じた。M/QD=0.6のシ リーズは、曲げ降伏する事なく、すべり破壊を生じた。
- (5) フランジ幅が広いほど等価粘性減衰定数 he は大き

い値となる傾向にある。

- (6) 曲げ変形成分の全体変形に対する割合は高々20% 程度である。
- (7) 各繰り返しでの耐力は、フランジ幅の広いものほど、 大きな荷重に耐える傾向にあり、フランジ幅の効果が あらわれているが、最大荷重付近においては、フラン ジ幅によらずほぼ同じ最大荷重を示している。又同一 部材角での繰り返しによる耐力低下率で見ると、せん 断補強筋比の多いものは耐力低下率は少ない傾向が認 められる。

§8. あとがき

本実験は、千葉大学工学部建築工学科野口助教授の御 指導、御協力を得て、同大学大型実験施設を使用して実 施された。こゝに野口助教授並びに同実験施設の方々に 厚く御礼を申し上げます。また当社技術研究所の関係各 位の皆様には、試験体の製作から加力、計測にいたるま で一連の御協力を頂きました。ここにあわせて感謝いた します。