石炭火力発電所本館建屋基礎の検討例(その2)

Design of Foundation Slab of Main Building

斉藤 正忠* Masatada Saitō

前田 詔一** Shōichi Maeda

要 約

本文は、東北電力㈱と当社で行った東北電力㈱能代火力発電所第一号機土木工事の共同 研究の内、本館建屋基礎スラブの設計概要を示すものである。

当該基礎スラブの設計では、地盤をウィンクラーバネにモデル化する従来の解析手法に 加えて、バネ相互の連成を考慮した等方性地盤上の平板解析手法を採用(当該基礎のよう な大規模な構造物に用いた例はない)し、合理的な設計を目指した。そのため、当設計部 において新たに解析プログラムを開発した。

今回採用した基礎スラブの設計方針に従った設計により、従来の設計によるものよりも 安全性をより確実に保証できる設計ができたと言える。

- H 次
 - §1. まえがき
 - §2. 弾性理論による接地圧
 - §3. Y.K.Cheung&O.C.Zienkiewiczによる 等方性 弾性地盤上の平板解析
 - §4. 構造解析モデル
 - §5. 設計方針
 - §6. あとがき

§1. まえがき

載荷荷重によって基礎スラブに生じる断面力を算出す るには、接地圧(地盤反力)が既知でなければならない。 しかし、この接地圧は、上質、荷重の載荷状態、基礎ス ラブの剛性および根入れ深さ等によって左右されること が知られているものの、真の接地圧分布を事前に知るこ とはほとんど不可能である。

従来は地盤をウィンクラーバネでモデル化し、接地圧 を求めていた。しかし、このウィンクラーバネは地盤の 変形を表現するには不適当であると指摘されている。に もかかわらず、従来から採用されてきたのは、設計にお ける安全率でこの不合理を十分カバーできるものと考え られてきたからと思われる。

今回の本館基礎においては、この点をできる限り明確 にし、設計において適切な考え方を提示するべく種々の 検討を行った。また、本館基礎は、Fig.1に示すように、 ラフト基礎と呼ばれる中空スラブ基礎であるが、この中 空スラブをどのような構造モデルにモデル化するかも大 きな問題であった。

以下に、これらの問題点に対する考え方を中心に本館 基礎スラブの設計概要を報告する。

§2.弾性理論による接地圧

弾性理論による接地圧分布は、Boussinesg,Borowickaらにより与えられている。

Boussinesgは剛体基礎に関して、理論的に接地圧を与 えている。1例として帯状基礎に等分布荷重が作用する 場合の接地圧分布をFig.2に示す。これによると基礎中 心の接地圧は0.6379 (q:荷重強度)となり、縁端では 無限大となる。

^{*}上木設計部副部長 **土木設計部設計課係長

Fig.1 基礎 えラブ形状 寸法

49

Borowickaは等分布荷重を受ける円形基礎および帯 状基礎について,基礎スラブと地盤の相体剛性K'rをパ ラメータとして,接地圧分布を理論的に誘導している (Fig.3参照)。この相体剛性K'rは式(1)で与えられるも のである。

$$K'_{r} = \frac{1}{6} \cdot \frac{1 - \nu_{s}^{2}}{1 - \nu_{p}^{2}} \cdot \frac{E_{p}}{E_{s}} \cdot (\frac{h}{a})^{-3}$$
(1)

ここに、 vs, vp: 上およびスラブのポアソン比

- E_s, E_p: 土およびスラブの弾性係数
- a:帯状基礎の場合はB/2,円形基礎の場合 はR
- h:スラブの厚さ

すなわち、スラブの剛性が非常に小さいかあるいは地 盤の剛性が非常に大きい場合(相対剛性が0の場合)の 接地圧は一様分布となり、逆にスラブの剛性が非常に大 きいか地盤の剛性が非常に小さい場合(相対剛性が無限 大の場合)の接地圧は中央で小さく、縁端で無限大とな る。

しかし、現実の地盤の支持力は有限であるから、無限 に大きい接地圧は生じ得ない。Ohdeはこのことを考慮 して、帯状基礎に関して実際的な接地圧分布を提案して いる (Fig.4参照)。

また,Schultzeは,等分布荷重を受ける長方形基礎ス ラブに関して,相対開性(Borowickaのものとは若干異

Fig.4 Ohdeの提案する帯状基礎の接地王

なる)をパラメータとして基礎スラブに生じる最大曲げ モーメントを与えている(このような特殊な条件下での 解は得られるものの、一般的な条件下での解は複雑にな り過ぎて現在のところFEM等による数値計算に頼らざ るを得ない)。

いずれにしても、弾性理論によると、載荷重が等分布 を場合でも接地圧が一様とはならず、基礎スラブには曲 げモーメントが生じることになる。

§3.Y.K.Cheung & O.C.Zienkiewiczによる 等方性弾性地盤上の平板解析

基礎地盤上に置かれた平板の曲げ解析は、従来、地盤 をウィンクラーバネにモデル化(ウィンクラー地盤)し ていた。このウィンクラー地盤は、地盤を一連の独立し たバネに置換したもので、接地圧はその点の変位に比例 し、式(2)で表される。

$$P = k \cdot w \tag{2}$$
ここで、P:接地王

k :バネ定数

w:変位

式(2)をFig.5に示すように、基礎スラブをα×bの有限要素に分割した場合に適用すると,式(3)となる。

Fig.5 基礎スラブと地盤

$$P_i = \alpha_i \cdot a \cdot b \cdot k \cdot w_i$$
 (3)
ここで、 P_i : 点 *i* における接地王
 α_i : 係数で、隅角部 = 1 / 4
側辺部 = 1 / 2
内 部 = 1
 w_i : 点 *i* の変位
式(3)をマトリックスの形で表したものが式(4)である。

Ł

$$P = a \cdot b \cdot k \cdot (\alpha) \{w\}$$
(4)

このウィンクラーバネは互いに独立であるから、[α] は非対角項が0となる対角マトリックスとなり、解析上 の取り扱いが容易である。しかし、ウィンクラーバネは バネ相互の連成を考慮していないため、現実の基礎地盤 の変形と比較して明らかに正しくない。

これに対して,Y.K.Cheung & O.C.Zienkiewiczは, 半無限の等方性弾性地盤上に置かれた平板に対して,バ ネ相互の連成を考慮した解析手法を提案している。

等方性弾性地盤上で, *i* 点に荷重が作用した場合の任 意点*n*での変位は, Boussinesqの式により,式(5)で表さ れる。

$$w_{ni} = \frac{P_{i}(1 - \nu_{s}^{2})}{\pi E_{s} r_{n}}$$
(5)

ここで, Pi: i 点に作用する荷重

wni:**P**iによる n 点での変位

νs:地盤のポアソン比

Es: 地盤の弾性係数

 γ_n : *i* 点と*n* 点との距離

したがって, *a*×*b*の長方形に一様荷重を加えた時の 長方形の中心での変位は,式(5)を長方形の範囲で積分し, 式(6)で与えられる(Fig.6参照)。

Fig.6 等方性弾性地盤に長方形の等分布荷重 が作用した場合の地盤の鉛直変位

$$w_{ii} = 2 \int_{\xi=0}^{\xi=\frac{a}{2}} \frac{\eta=\frac{b}{2}}{\pi e} \frac{P_{i}}{a \ b} \cdot \frac{1-\nu_{s}^{2}}{\pi E_{s}} \cdot \frac{d \ \xi \cdot d \ \eta}{\sqrt{(\xi^{2}+\eta^{2})}}$$
$$= \frac{P_{i} \ (1-\nu_{s}^{2})}{a \ \pi E_{s}} f_{ii} \tag{6}$$

載荷領域外の点に関しても、同様の積分を行うことで 変位が求まる。しかし、載荷領域外に関しては、式(5)に おけるPiを長方形要素に作用している荷重の合計とし、 γn を要素の中心間距離とすることで、積分を行わなくと も十分良い精度で変位を算出できる。

式(5)及び式(6)をまとめて、マトリックスの形で表すと、 式(7)のようになる。

$$\{w\} = \frac{1 - \nu_{s}^{2}}{a \pi E_{s}} [f] \{P\}$$
(7)

式(7)から式(8)が得られる。

$$\{P\} = \frac{a \pi E_s}{1 - \nu_s^2} \left[K_p \right] \{w\}$$
(8)

 $CCC, (K_p) = (f)^{-1}$

有限要素法によって問題を解く場合の基本式は式(9)で ある。これを解くには、作用荷重と変位との関係式を与 える剛性マトリックスが必要となる。

平板に作用する荷重は、載荷重Qから接地圧Pを引い た値である。したがって、式(9)は、剛性マトリックスを 変形して、式(10)のように表される。

$$\{Q\}-\{P\}=\frac{D}{15\cdot a b} (K) \{w\}$$
 (10)
ここで、 $D=\frac{E_{P}t^{3}}{12(1-\nu_{P}^{2})}$:平板の剛性率

E。:平板の弾性係数

ν_α:平板のポアソン比

t : 平板の板厚

以上のことから,等方性弾性地盤上に置かれた平板の 作用荷重と変位との関係式は,式(10)に式(8)を代入するこ とにより,式(11)で表される。

$$\{Q\} = \frac{D}{15 \cdot a \ b} \left((K) + \frac{15 \cdot a \ b}{D} \cdot \frac{a \ \pi E_{s}}{1 - \nu_{s}^{2}} (K_{p}) \right) \{w\}$$
(11)

式(11)から剛性マトリックスが計算され、さらに、変位 ベクトル {w} が計算される。変位が計算されると、式 (8)から接地圧が計算され、平板に生じる曲げモーメント は、簡単なマトリックス計算により計算できる。

参考までに、ウィンクラー地盤の場合の載荷重と変位 との関係式を示すと、式(10)に式(4)を代入することにより、 式(12)のようになる。

$$\{Q\} = \frac{D}{15 \cdot a \ b} \left(\left(K\right) + \frac{15 \cdot a \ b}{D} \cdot a \cdot b \cdot k(\alpha) \right) \\ \cdot \{w\}$$
(12)

本解析理論による計算結果を以下に例示する。

平板に等分布荷重が作用した場合の計算結果はFig.7, 8のようである。Fig.7の縦軸は等分布荷重qに対する接 地圧pの割合を表し、横軸は板と地盤との相対剛性 γ = 180 π (E_s/E_p) (a/t)³の対数である。Fig.8の縦軸は

西松建設技報 VOL.9

Fig.8 等分布荷重 q を受ける板の中心線上の接地圧

Fig.7と同じで、横軸は端部から中央までの距離である。

この2つの図から明らかなように,ウィンクラー地盤 では等分布荷重を作用させた場合,平板は全ての点で一 様に沈下し,板に曲げモーメントは発生しない。これに 対して,等方性弾性地盤では,接地圧は端部・隅角部で 大きくなり,相対剛性が大きくなるほど,つまり板の剛 性が大きくなるほどその傾向は大きくなっており,より 実際に適していると言える。

次に,集中荷重が作用した場合の計算結果を示すと, Fig.9~11のようになる。Fig.9,10は等方性弾性地盤 における計算結果で,Fig.11はウィンクラー地盤の計算 結果である。Fig.10,11からわかるように,板の剛性が 非常に小さい範囲においては,両者は同様の傾向を示す が,板の剛性が大きくなると,ウィンクラー地盤では端

部で接地圧が大きくなるという特徴が表現できなくなってしまう。

§4.構造解析モデル

基礎スラブの構造解析モデルには次のようなものが有 る。

- ① 剛体モデル
- ② バネ支持された格子桁モデル
- ③ バネ支持された平板モデル
- ④ 等方性弾性地盤上の平板モデル
- これらの構造解析モデルの特徴を以下に示す。

フーチングの設計において一般に採用されるモデルで ある。これは、接地圧分布を直線と仮定するもので、こ の取扱いは、通常、安全側の設計となると言われている。 しかし、今回のように基礎スラブがL形で、その面積も 大きく、さらに荷重の載荷状態が不均一である場合には、 局部的な断面力の評価が難しく、全体的に過大な断面力 を与えることが考えられる。

② バネ支持された格子桁モデル

今回のような中空スラブ基礎の場合,②のバネ支持さ れた格子桁モデルにより解析されることが多く,従来の 本館建屋基礎の設計事例でも、このモデルが採用されて いる。

このモデルはFig.12に示すように隔壁をはりと考え, 格子桁に置き換えるものである。そして,バネについて は,計算を容易にするために連続バネとは考えず,格点 のみをバネ支持し,その大きさについては地盤の鉛直地 盤反力係数に各格点の支持面積abcdを乗じて決定する。 このバネは,§3に示したウィンクラーバネであり,先に も述べたように,現実の基礎地盤の変形を表すことが難 しい。

また、中空スラブを格子桁に分割するため、解析結果 として大きなねじりモーメントが計算される。しかし、 実際には、隣接するはりは互いに項版及び底版が結合さ れているため、そのねじりモーメントは主に直交方向の 項版及び底版に作用する軸方向力として評価されるべき ものである。 ③ バネ支持された平板モデル

平板を有限要素法により解析する際に、その節点に② のバネ支持された格子桁モデルと同じウィンクラーバネ を考えるものである。したがって、ウィンクラーバネの もつ不合理性を有している。

また、当該スラブのような中空スラブに対する適用に あたっては、その取扱いに問題が生じる。一つには、中 空スラブを中実スラブに置換する際のスラブ厚の換算方 法である。接地圧分布は基礎スラブの曲げ剛性に関係す ることから、曲げ剛性がほぼ等しくなるようなスラブ厚 を有する中実スラブに置換すればよいと思われるが、そ の妥当性を明らかにすることは難しい。また、平板解析 の場合には曲げモーメントは求まるものの、せん断力が 求まらないことも中空スラブを中実スラブに置換するこ とによる問題の一つである。

④ 等方性弾性地盤上の平板モデル

§3 に詳述したように、この解析モデルのバネは全てが 従属であり、弾性地盤をうまく表すことができる。この ため、この解析モデルによると、Fig.2に示したような接 地王分布を求めることができる。すなわち、③のバネ支 持された平板モデルでは、等分布荷重を載荷しても曲げ モーメントが生じないのに対し、本解析モデルによると、 平板と地盤の相対剛性を考慮した曲げモーメントを計算 できるのである。

しかし,この解析モデルでは,弾性地盤を考えている ために,接地圧分布は周辺部で非現実的なほど大きくな り,曲げモーメントは過大評価されることになる。

また、中空スラブへの適用については、③と同じである。

§5. 設計方針

基礎スラブの設計においては、どのような接地圧を考 えるか、そして基礎スラブをどのような構造にモデル化 して解析するかが要点である。

- (2)格子桁バネ支持モデル

Fig.12 格子桁モデル

本設計においては、当該基礎の重要性を考慮して、次 のような設計方針に従うものとした。以下、帯状基礎で 等分布荷重が載荷される場合についてその考え方を説明 する。

(1) 接地庄

設計に際し、実際の接地圧を確定できないので、Fig. 13に示すように2つの接地圧を考えて設計する。すなわ ち、一様な接地圧と、弾性理論による接地圧分布のよう に、中央部で小さく、縁端部で大きい分布の接地圧の場 合の両方で設計し、両者の結果の包絡値を採用する。こ れは、実際の接地圧がこの中間にあると推測され、構造 物の重要性からして、より高い安全性を確保しようとし たためである。

ただし、弾性理論による接地圧分布をそのまま採用す ると、中央部の接地圧を過少評価するため、曲げモーメ ントを過大評価することになる。そのため、Ohdeの接地 圧分布を採用することにした。

以上の考え方を実際の基礎スラブに厳密に適用するこ とは困難なので,次のような便宜的な取扱いをした。

 (1) 等分布荷重に対して接地圧が一様に生じるとする 場合の解析は、ウィンクラーバネを考えて計算する。
 (2) 中央部で小さく、縁端部で大きい接地圧分布を考 える場合の解析は、実務上、等方性弾性地盤上の平板 モデル解析によらざるをえない。ただし、帯状基礎に 等分布荷重を載荷した場合の接地圧分布がOhdeの接 地圧分布に似た分布となる仮想地盤の変形係数を試算 により求め、この仮想地盤の変形係数を用いて、実形 状、実荷重について計算する。これにより、基礎スラ つ断面に生じる曲げモーメントが過大になることは避 けられる。

(2) 構造のモデル化

中空スラブ構造をどのようにモデル化するのが適切で あるかについては明らかではない。しかし、実務的には、

Fig.14 解析フロー

先の構造解析モデルに示した格子桁モデルか平板モデル のいずれかによるしかない。

本検討では、やはり構造物の重要性を考えて接地圧に ついて採った考え方と同じく、両者についての計算結果 の包絡値を設計に反映し、その安全性を確保することと した。

(3) 解析フロー

以上の考えに従う解析フローをFig.14に示す。

Fig.14に示すように,接地圧の考え方の違いに対応し た二つの大きな流れがある。すなわち,ウィンクラーの バネモデルによる解析は,等分布荷重に対して一様な接 地圧が生じると考える場合で,等方性弾性地盤上の平板 モデル解析はOhdeの接地圧的なものを考えるものであ る。

弾性地盤上の基礎スラブの解析において,等方性弾性 地盤上の平板解析とバネ支持された格子桁モデル解析を 行うのは,解析モデルとして一つに絞ることを避けたも のである。

この内,バネ支持された格子桁モデル解析では,その バネがウィンクラーバネであるため,等方性弾性地盤の 平板解析で求められる接地圧分布を再現するためには, 部分的にバネ値を補正する必要がある。その際,直接に 接地圧を合わせることは実務上困難であるので,平板解 析モデルの曲げモーメントと同程度の曲げモーメントを 与えるように設定することとした。これにより,ほぼ同 様の接地圧を再現することができる。

§6. あとがき

本館建屋基礎スラブの設計において、等方性弾性地盤 上の平板解析手法を取り入れ、合理的な設計を目指した。 結果について詳細に報告はできなかったが、従来の設 計によるものよりも、一段と安全性を高く保証できる設 計ができたと言える。今後、大規模な基礎スラブの設計 を行う際に、本設計が参考となれば幸いである。

(参考文献)

Y.K.Cheung & O.C.Zienkiewicz;Plates and tanks on elastic foundations—an application of finite element method, Int. J. Solids Structures. 1965. vol. 1. pp. 451 to 465.